| [1] |
Almangush A, Mäkitie AA, Triantafyllou A, et al. Staging and grading of oral squamous cell carcinoma: An update[J]. Oral Oncol, 2020, 107: 104799.
|
| [2] |
Kamal F, Ghafary ES, Hamrah MH, et al. Awareness and knowledge of tobacco use and its relation to oral cancer among patients visiting stomatology teaching hospital[J]. Cancer Manag Res, 2024, 16: 1345-1352.
doi: 10.2147/CMAR.S479933
pmid: 39380889
|
| [3] |
Gokavarapu S, Chander R, Parvataneni N, et al. Close margins in oral cancers: Implication of close margin status in recurrence and survival of pT1N0 and pT2N0 oral cancers[J]. Int J Surg Oncol, 2014, 2014: 545372.
|
| [4] |
Sharma P, Wadhwan V. Prognostic implications of malignancy grading of invasive fronts of oral squamous cell carcinoma[J]. J Cancer Res Ther, 2023, 19(Suppl 2): S835-S840.
doi: 10.4103/jcrt.JCRT_132_20
pmid: 38384063
|
| [5] |
Botha H, Farah CS, Koo K, et al. The role of glucose transporters in oral squamous cell carcinoma[J]. Biomolecules, 2021, 11(8): 1070.
|
| [6] |
de Mattos SEC, Diel LF, Bittencourt LS, et al. Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: A systematic review with meta-analysis[J]. Braz J Med Biol Res, 2021, 54(3): e10504.
|
| [7] |
Zhu XY, Du J, Gu ZQ. Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma[J]. Mol Cell Biochem, 2020, 474(1-2): 147-158.
doi: 10.1007/s11010-020-03840-5
pmid: 32737775
|
| [8] |
Wang YL, Zhang XM, Zhang YC, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma[J]. Cancer Biol Ther, 2015, 16(6): 839-845.
doi: 10.1080/15384047.2015.1030551
pmid: 25970228
|
| [9] |
Cai HS, Li JX, Zhang YD, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Front Oncol, 2019, 9: 1446.
doi: 10.3389/fonc.2019.01446
pmid: 31921691
|
| [10] |
de Vicente JC, Fresno MF, Villalain L, et al. Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma[J]. Oral Oncol, 2005, 41(3): 283-293.
doi: 10.1016/j.oraloncology.2004.08.013
pmid: 15743691
|
| [11] |
Nakanishi M, Korechika A, Yamakawa H, et al. Acidic microenvironment induction of interleukin-8 expression and matrix metalloproteinase-2 /-9 activation via acid-sensing ion channel 1 promotes breast cancer cell progression[J]. Oncol Rep, 2021, 45(3): 1284-1294.
|
| [12] |
Levental KR, Yu HM, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling[J]. Cell, 2009, 139(5): 891-906.
doi: 10.1016/j.cell.2009.10.027
pmid: 19931152
|
| [13] |
Liu X, Li J, Yang XS, et al. Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via p-FAK/p-paxillin/YAP signaling[J]. Int J Oral Sci, 2023, 15(1): 32.
doi: 10.1038/s41368-023-00236-1
pmid: 37532712
|
| [14] |
Erler JT, Bennewith KL, Nicolau M, et al. Lysyl oxidase is essential for hypoxia-induced metastasis[J]. Nature, 2006, 440(7088): 1222-1226.
|
| [15] |
Yu M, Shen WL, Shi XZ, et al. Upregulated LOX and increased collagen content associated with aggressive clinicopathological features and unfavorable outcome in oral squamous cell carcinoma[J]. J Cell Biochem, 2019, 120(9): 14348-14359.
doi: 10.1002/jcb.28669
pmid: 31140650
|
| [16] |
Zhang SZ, Wang JJ, Chen Y, et al. CAFs-derived lactate enhances the cancer stemness through inhibiting the MST1 ubiquitination degradation in OSCC[J]. Cell Biosci, 2024, 14(1): 144.
doi: 10.1186/s13578-024-01329-y
pmid: 39605072
|
| [17] |
Yang J, Shi XK, Yang M, et al. Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway[J]. Int J Oral Sci, 2021, 13(1): 12.
doi: 10.1038/s41368-021-00115-7
pmid: 33762576
|
| [18] |
Gan ML, Liu NS, Li WT, et al. Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: New horizons in immunotherapy[J]. Mol Cancer, 2024, 23(1): 273.
doi: 10.1186/s12943-024-02193-7
pmid: 39696340
|
| [19] |
Liu H, Pan MM, Liu MX, et al. Lactate: A rising star in tumors and inflammation[J]. Front Immunol, 2024, 15: 1496390.
|
| [20] |
Gu XY, Yang JL, Lai R, et al. Impact of lactate on immune cell function in the tumor microenvironment: Mechanisms and therapeutic perspectives[J]. Front Immunol, 2025, 16: 1563303.
|
| [21] |
Seo B, Coates DE, Lewis J, et al. Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma[J]. Pathology, 2022, 54(7): 874-881.
|
| [22] |
Li LY, Yang Q, Jiang YY, et al. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer[J]. Nat Commun, 2021, 12(1): 4362.
doi: 10.1038/s41467-021-24656-x
pmid: 34272396
|
| [23] |
Shao YT, Du Y, Chen Z, et al. Mesenchymal stem cell-mediated adipogenic transformation: A key driver of oral squamous cell carcinoma progression[J]. Stem Cell Res Ther, 2025, 16(1): 12.
doi: 10.1186/s13287-025-04132-9
pmid: 39849541
|
| [24] |
da Silva SD, Cunha IW, Nishimoto IN, et al. Clinicopathological significance of ubiquitin-specific protease 2a (USP2a), fatty acid synthase (FASN), and ErbB2 expression in oral squamous cell carcinomas[J]. Oral Oncol, 2009, 45(10): e134-e139.
|
| [25] |
Wu JS, Zheng M, Zhang M, et al. Porphyromonas gingivalis promotes 4-nitroquinoline-1-oxide-induced oral carcinogenesis with an alteration of fatty acid metabolism[J]. Front Microbiol, 2018, 9: 2081.
|
| [26] |
Zhi Y, Wang Q, Zi MX, et al. Spatial transcriptomic and metabolomic landscapes of oral submucous fibrosis-derived oral squamous cell carcinoma and its tumor microenvironment[J]. Adv Sci, 2024, 11(12): 2306515.
|
| [27] |
Pang X, Li TJ, Shi RJ, et al. IRF2BP2 drives lymphatic metastasis in OSCC cells by elevating mitochondrial fission-dependent fatty acid oxidation[J]. Mol Carcinog, 2024, 63(1): 45-60.
|
| [28] |
Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017, 541(7635): 41-45.
|
| [29] |
Wu Q, Li B, Li JJ, et al. Cancer-associated adipocytes as immunomodulators in cancer[J]. Biomark Res, 2021, 9(1): 2.
doi: 10.1186/s40364-020-00257-6
pmid: 33413697
|
| [30] |
Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer-associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p-ACLY axis[J]. Cancer Sci, 2024, 115(5): 1433-1445.
|
| [31] |
巫德阳, 吴芳龙, 周红梅. 癌相关成纤维细胞源性脂肪酸促进口腔鳞癌细胞侵袭的机制研究[C]//中华口腔医学会第15次全国口腔黏膜病学学术大会暨第13次全国口腔中西医结合学术大会论文汇编. 南宁, 2023: 75-76.
|
| [32] |
Liu L, Huo SP, Liu JH, et al. Metabolic reprogramming of myeloid-derived suppressor cells in the tumor microenvironment[J]. Discov Med, 2021, 31(164): 141-146.
pmid: 35188888
|
| [33] |
Cetindis M, Biegner T, Munz A, et al. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2016, 273(2): 495-503.
doi: 10.1007/s00405-015-3543-7
pmid: 25663193
|
| [34] |
Luo YJ, Li W, Ling ZH, et al. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells[J]. Cancer Med, 2020, 9(10): 3489-3499.
|
| [35] |
Zhang H, Che YL, Xuan B, et al. Serine hydroxymethyltransferase 2 (SHMT2) potentiates the aggressive process of oral squamous cell carcinoma by binding to interleukin enhancer-binding factor 2 (ILF2)[J]. Bioengineered, 2022, 13(4): 8785-8797.
doi: 10.1080/21655979.2022.2051886
pmid: 35333683
|
| [36] |
Yuan ZY, Li M, Tang ZG. BCAT1 promotes cell proliferation, migration, and invasion via the PI3K-Akt signaling pathway in oral squamous cell carcinoma[J]. Oral Dis, 2025, 31(2): 364-375.
|
| [37] |
Pang X, Fan HY, Tang YL, et al. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma[J]. PLoS One, 2020, 15(2): e0229089.
|
| [38] |
Saravanan L, Mahale A, Gota V, et al. Necrostatin-1 attenuates oral squamous cell carcinoma by modulating tumour immune response in mice[J]. Fundam Clin Pharmacol, 2025, 39(3): e70008.
|
| [39] |
Fu Y, Ding L, Yang XH, et al. Asparagine synthetase-mediated l-asparagine metabolism disorder promotes the perineural invasion of oral squamous cell carcinoma[J]. Front Oncol, 2021, 11: 637226.
|
| [40] |
Chen TY, Xu YM, Yang F, et al. Crosstalk of glutamine metabolism between cancer-associated fibroblasts and cancer cells[J]. Cell Signal, 2025, 133: 111874.
|
| [41] |
Kay EJ, Paterson K, Riera-Domingo C, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix[J]. Nat Metab, 2022, 4(6): 693-710.
doi: 10.1038/s42255-022-00582-0
pmid: 35760868
|
| [42] |
Zhang Y, Zhang J, Zhao SM, et al. Single-cell RNA sequencing highlights the immunosuppression of IDO1(+) macrophages in the malignant transformation of oral leukoplakia[J]. Theranostics, 2024, 14(12): 4787-4805.
doi: 10.7150/thno.99112
pmid: 39239507
|
| [43] |
Struckmeier AK, Radermacher A, Fehrenz M, et al. IDO1 is highly expressed in macrophages of patients in advanced tumour stages of oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2023, 149(7): 3623-3635.
|
| [44] |
Takahashi H, Sakakura K, Kudo T, et al. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages[J]. Oncotarget, 2017, 8(5): 8633-8647.
doi: 10.18632/oncotarget.14374
pmid: 28052009
|
| [45] |
Pokrývková B, Šmahelová J, Dalewská N, et al. ARG1 mRNA level is a promising prognostic marker in head and neck squamous cell carcinomas[J]. Diagnostics, 2021, 11(4): 628.
|
| [46] |
Hu SM, Lu HZ, Xie WQ, et al. TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma[J]. J Clin Invest, 2022, 132(19): e157649.
|
| [47] |
Wei J, Wu J, Xu W, et al. Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway[J]. Cell Death Dis, 2018, 9: 599.
doi: 10.1038/s41419-018-0623-9
pmid: 29789538
|
| [48] |
Li ZG, Liu JY, Que L, et al. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019, 10(23): 5770-5784.
doi: 10.7150/jca.29838
pmid: 31737114
|
| [49] |
Fontana F, Giannitti G, Marchesi S, et al. The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer[J]. Int J Biol Sci, 2024, 20(8): 3113-3125.
doi: 10.7150/ijbs.89942
pmid: 38904014
|
| [50] |
Liu YY, Shen L, Li Y, et al. ETS1-mediated regulation of SOAT1 enhances the malignant phenotype of oral squamous cell carcinoma and induces tumor-associated macrophages M2-like polarization[J]. Int J Biol Sci, 2024, 20(9): 3372-3392.
doi: 10.7150/ijbs.93815
pmid: 38993570
|
| [51] |
Guo DL, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy[J]. CNS Oncol, 2013, 2(3): 289-299.
doi: 10.2217/cns.13.20
pmid: 24159371
|
| [52] |
Huang GZ, Chen S, He JL, et al. Histone lysine lactylation (kla)-induced BCAM promotes OSCC progression and Cis-platinum resistance[J]. Oral Dis, 2025, 31(4): 1116-1132.
|
| [53] |
Liu Y, Cao PL, Xiao L, et al. Hypomethylation-associated Sox11 upregulation promotes oncogenesis via the PI3K/AKT pathway in OLP-associated OSCC[J]. J Cell Mol Med, 2024, 28(14): e18556.
|
| [54] |
Zheng Z, Ma XZ, Li HF. Circular RNA circMDM2 accelerates the glycolysis of oral squamous cell carcinoma by targeting miR-532-3p/HK2[J]. J Cell Mol Med, 2020, 24(13): 7531-7537.
|
| [55] |
Zhu LS, Wang YL, Li R, et al. circ_BICD2 acts as a CeRNA to promote tumor progression and Warburg effect in oral squamous cell carcinoma by sponging miR-107 to enhance HK2[J]. Am J Transl Res, 2020, 12(7): 3489-3500.
|
| [56] |
Angelin A, Gil-de-Gómez L, Dahiya S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments[J]. Cell Metab, 2017, 25(6): 1282-1293.e7.
doi: S1550-4131(16)30651-9
pmid: 28416194
|
| [57] |
Wang HP, Franco F, Tsui YC, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol, 2020, 21(3): 298-308.
doi: 10.1038/s41590-019-0589-5
pmid: 32066953
|
| [58] |
Hayashi T, Yoshikawa K, Suzuki S, et al. Tumor-infiltrating FoxP3+ T cells are associated with poor prognosis in oral squamous cell carcinoma[J]. Clin Exp Dent Res, 2022, 8(1): 152-159.
|
| [59] |
Al-Khami AA, Rodriguez PC, Ochoa AC. Metabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancer[J]. Oncoimmunology, 2016, 5(8): e1200771.
|
| [60] |
Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007, 109(9): 3812-3819.
doi: 10.1182/blood-2006-07-035972
pmid: 17255361
|
| [61] |
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy[J]. Front Immunol, 2024, 15: 1353787.
|
| [62] |
Feng J, Yang H, Zhang Y, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells[J]. Oncogene, 2017, 36(42): 5829-5839.
doi: 10.1038/onc.2017.188
pmid: 28604752
|
| [63] |
Peralta RM, Xie BX, Lontos K, et al. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism[J]. Nat Immunol, 2024, 25(12): 2297-2307.
doi: 10.1038/s41590-024-01999-3
pmid: 39516648
|
| [64] |
Yang XH, Zhang XX, Jing Y, et al. Amino acids signatures of distance-related surgical margins of oral squamous cell carcinoma[J]. EBioMedicine, 2019, 48: 81-91.
|
| [65] |
Yang XH, Song XW, Zhang XX, et al. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma[J]. EBioMedicine, 2021, 70: 103529.
|
| [66] |
D’Hue C, Moore M, Summerlin DJ, et al. Feasibility of desorption electrospray ionization mass spectrometry for diagnosis of oral tongue squamous cell carcinoma[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 133-141.
|
| [67] |
Bednarczyk K, Gawin M, Chekan M, et al. Discrimination of normal oral mucosa from oral cancer by mass spectrometry imaging of proteins and lipids[J]. J Mol Histol, 2019, 50(1): 1-10.
doi: 10.1007/s10735-018-9802-3
pmid: 30390197
|
| [68] |
Wang T, Liu YQ, Wu XH, et al. Multi-omics reveals miR-181a-5p regulates PPAR-driven lipid metabolism in Oral squamous cell carcinoma: Insights from CRISPR/Cas9 knockout models[J]. J Proteomics, 2025, 319: 105480.
|
| [69] |
Sunder N, Rao N, Kartha VB, et al. Laser Raman spectroscopy: A novel diagnostic tool for oral cancer[J]. J Orofac Sci, 2011, 3(2): 15.
|
| [70] |
Barroso EM, Smits RWH, van Lanschot CGF, et al. Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery[J]. Cancer Res, 2016, 76(20): 5945-5953.
pmid: 27530325
|
| [71] |
Barroso EM, Smits RWH, Bakker Schut TC, et al. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy[J]. Anal Chem, 2015, 87(4): 2419-2426.
doi: 10.1021/ac504362y
pmid: 25621527
|
| [72] |
Han RY, Lin N, Huang J, et al. Diagnostic accuracy of Raman spectroscopy in oral squamous cell carcinoma[J]. Front Oncol, 2022, 12: 925032.
|
| [73] |
Devpura S, Thakur JS, Sethi S, et al. Diagnosis of head and neck squamous cell carcinoma using Raman spectroscopy: Tongue tissues[J]. J Raman Spectrosc, 2012, 43(4): 490-496.
|
| [74] |
Girish CM, Iyer S, Thankappan K, et al. Rapid detection of oral cancer using Ag-TiO2 nanostructured surface-enhanced Raman spectroscopic substrates[J]. J Mater Chem B, 2014, 2(8): 989-998.
|
| [75] |
Daniel A, Prakasarao A, David B, et al. Raman mapping of oral tissues for cancer diagnosis[J]. J Raman Spectrosc, 2014, 45(7): 541-549.
|
| [76] |
Yan H, Yu MX, Xia JB, et al. Tongue squamous cell carcinoma discrimination with Raman spectroscopy and convolutional neural networks[J]. Vib Spectrosc, 2019, 103: 102938.
|
| [77] |
Ding JY, Yu MX, Zhu LQ, et al. Diverse spectral band-based deep residual network for tongue squamous cell carcinoma classification using fiber optic Raman spectroscopy[J]. Photodiagnosis Photodyn Ther, 2020, 32: 102048.
|
| [78] |
Connolly JM, Davies K, Kazakeviciute A, et al. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis[J]. Nanomedicine, 2016, 12(6): 1593-1601.
doi: 10.1016/j.nano.2016.02.021
pmid: 27015768
|
| [79] |
Zhang CG, Xu L, Miao XY, et al. Machine learning assisted dual-modal SERS detection for circulating tumor cells[J]. Biosens Bioelectron, 2025, 268: 116897.
|
| [80] |
Matsubara R, Kawano S, Chikui T, et al. Clinical significance of combined assessment of the maximum standardized uptake value of F-18 FDG PET with nodal size in the diagnosis of cervical lymph node metastasis of oral squamous cell carcinoma[J]. Acad Radiol, 2012, 19(6): 708-717.
doi: 10.1016/j.acra.2012.02.009
pmid: 22484437
|
| [81] |
Morand GB, Broglie MA, Schumann P, et al. Histometabolic tumor imaging of hypoxia in oral cancer: Clinicopathological correlation for prediction of an aggressive phenotype[J]. Front Oncol, 2020, 10: 1670.
doi: 10.3389/fonc.2020.01670
pmid: 32984043
|
| [82] |
Togo M, Yokobori T, Shimizu K, et al. Diagnostic value of (18)F-FDG-PET to predict the tumour immune status defined by tumoural PD-L1 and CD8+ tumour-infiltrating lymphocytes in oral squamous cell carcinoma[J]. Br J Cancer, 2020, 122(11): 1686-1694.
|
| [83] |
Xu XX, Zhao HQ, Liu FT, et al. Clinical value of 18 F-(2S, 4R)-4-fluoroglutamine PET/CT in glioma[J]. Clin Nucl Med, 2025, 50(2): 125-132.
|
| [84] |
Kim MJ, Akula HK, Marden J, et al. The potential utility of (2S, 4R)-4-[(18)F] fluoroglutamine as a novel metabolic imaging marker for inflammation explored by rat models of arthritis and paw edema[J]. Mol Imaging Biol, 2025, 27(1): 10-16.
|
| [85] |
Saha S, Vierkant RA, Johnson GB, et al. C(11) choline PET/CT succeeds when conventional imaging for primary hyperparathyroidism fails[J]. Surgery, 2023, 173(1): 117-123.
|
| [86] |
Linz C, Brands RC, Herterich T, et al. Accuracy of 18-F fluorodeoxyglucose positron emission tomographic/computed tomographic imaging in primary staging of squamous cell carcinoma of the oral cavity[J]. JAMA Netw Open, 2021, 4(4): e217083.
|
| [87] |
Li R, Gao RF, Zhao YJ, et al. pH-responsive graphene oxide loaded with targeted peptide and anticancer drug for OSCC therapy[J]. Front Oncol, 2022, 12: 930920.
|