| [1] |
Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92.
doi: 10.1038/s41572-020-00224-3
pmid: 33243986
|
| [2] |
Rahman QB, Iocca O, Kufta K, et al. Global burden of head and neck cancer[J]. Oral Maxillofac Surg Clin North Am, 2020, 32(3): 367-375.
|
| [3] |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953.
doi: 10.1002/ijc.31937
pmid: 30350310
|
| [4] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
| [5] |
Osazuwa-Peters N, Simpson MC, Zhao LW, et al. Suicide risk among cancer survivors: Head and neck versus other cancers[J]. Cancer, 2018, 124(20): 4072-4079.
doi: 10.1002/cncr.31675
pmid: 30335190
|
| [6] |
Chamoli A, Gosavi AS, Shirwadkar UP, et al. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics[J]. Oral Oncol, 2021, 121: 105451.
|
| [7] |
Ishwaran H, Kogalur UB, Blackstone EH, et al. Random survival forests[J]. Ann Appl Stat, 2008, 2(3): 841-860.
|
| [8] |
陈哲, 许恒敏, 李哲轩, 等. 随机生存森林:基于机器学习算法的生存分析模型[J]. 中华预防医学杂志, 2021, 55(1): 104-109.
|
| [9] |
Ouyang D, Shi MT, Wang YM, et al. Prognostic analysis of PT1-T2aN0M0 cervical adenocarcinoma based on random survival forest analysis and the generation of a predictive nomogram[J]. Front Oncol, 2022, 12: 1049097.
|
| [10] |
Wang W, Wang WH, Zhang DD, et al. Creation of a machine learning-based prognostic prediction model for various subtypes of laryngeal cancer[J]. Sci Rep, 2024, 14: 6 484.
|
| [11] |
Zeng JX, Zeng JH, Lin KY, et al. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection[J]. Hepatobiliary Surg Nutr, 2022, 11(2): 176-187.
|
| [12] |
Ma BS, Geng Y, Meng FY, et al. Identification of a sixteen-gene prognostic biomarker for lung adenocarcinoma using a machine learning method[J]. J Cancer, 2020, 11(5): 1288-1298.
doi: 10.7150/jca.34585
pmid: 31956375
|
| [13] |
Tang DD, Chen MJ, Huang XH, et al. SRplot: A free online platform for data visualization and graphing[J]. PLoS One, 2023, 18(11): e0294236.
|
| [14] |
Choi YS, Ahn SS, Chang JH, et al. Machine learning and radiomic phenotyping of lower grade gliomas: Improving survival prediction[J]. Eur Radiol, 2020, 30(7): 3834-3842.
doi: 10.1007/s00330-020-06737-5
pmid: 32162004
|
| [15] |
Liu C, Wang XJ, Genchev GZ, et al. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction[J]. Methods, 2017, 124: 100-107.
doi: S1046-2023(17)30066-X
pmid: 28627406
|
| [16] |
Liu GH, Zeng XJ, Wu BL, et al. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with radiotherapy response of nasopharyngeal carcinoma and prognosis of head and neck cancer[J]. Cancer Biol Ther, 2020, 21(2): 139-146.
doi: 10.1080/15384047.2019.1670521
pmid: 31698994
|
| [17] |
Rong MT, Zhang M, Dong FH, et al. LncRNA RASAL2-AS1 promotes METTL14-mediated m6A methylation in the proliferation and progression of head and neck squamous cell carcinoma[J]. Cancer Cell Int, 2024, 24(1): 113.
doi: 10.1186/s12935-024-03302-8
pmid: 38528591
|
| [18] |
Wang N, Li J, He J, et al. Knockdown of lncRNA CCAT1 inhibits the progression of colorectal cancer via hsa-miR-4679 mediating the downregulation of GNG10[J]. J Immunol Res, 2021, 2021: 8930813.
|
| [19] |
Lv Z, Sun LP, Xu Q, et al. Joint analysis of lncRNA m(6)a methylome and lncRNA/mRNA expression profiles in gastric cancer[J]. Cancer Cell Int, 2020, 20: 464.
|
| [20] |
Li JZ, Chen N, Gong XB. Prognostic implications of aberrantly expressed methylation-driven genes in hepatocellular carcinoma: A study based on The Cancer Genome Atlas[J]. Mol Med Rep, 2019, 20(6): 5304-5314.
|
| [21] |
Arang N, Lubrano S, Ceribelli M, et al. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma[J]. Cell Rep Med, 2023, 4(11): 101244.
|
| [22] |
García-Mulero S, Fornelino R, Punta M, et al. Driver mutations in GNAQ and GNA11 genes as potential targets for precision immunotherapy in uveal melanoma patients[J]. Oncoimmunology, 2023, 12(1): 2261278.
|
| [23] |
Zhou B, Guo R. Integrative analysis of significant RNA-binding proteins in colorectal cancer metastasis[J]. J Cell Biochem, 2018, 119(12): 9730-9741.
doi: 10.1002/jcb.27290
pmid: 30132996
|
| [24] |
Lan T, Yuan KF, Yan XK, et al. LncRNA SNHG10 facilitates hepatocarcinogenesis and metastasis by modulating its homolog SCARNA13 via a positive feedback loop[J]. Cancer Res, 2019, 79(13): 3220-3234.
doi: 10.1158/0008-5472.CAN-18-4044
pmid: 31101763
|
| [25] |
He P, Xu YQ, Wang ZJ. LncRNA SNHG10 increases the methylation of miR-218 gene to promote glucose uptake and cell proliferation in osteosarcoma[J]. J Orthop Surg Res, 2020, 15(1): 353.
|
| [26] |
Singh S, Kumar S, Srivastava RK, et al. Loss of ELF5-FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling[J]. Nat Cell Biol, 2020, 22(5): 591-602.
|
| [27] |
Alburquerque-Bejar JJ, Navajas-Chocarro P, Saigi M, et al. MYC activation impairs cell-intrinsic IFNγ signaling and confers resistance to anti-PD1/PD-L1 therapy in lung cancer[J]. Cell Rep Med, 2023, 4(4): 101006.
|
| [28] |
Murakami M, Hashida Y, Imajoh M, et al. PCR array analysis of gene expression profiles in chronic active Epstein–Barr virus infection[J]. Microbes Infect, 2014, 16(7): 581-586.
doi: 10.1016/j.micinf.2014.04.004
pmid: 24801498
|
| [29] |
Nakaya T, Kuwahara K, Ohta K, et al. Critical role of Pcid2 in B cell survival through the regulation of MAD2 expression[J]. J Immunol, 2010, 185(9): 5180-5187.
doi: 10.4049/jimmunol.1002026
pmid: 20870947
|
| [30] |
Wu CM, Jiang S, Chen ZC, et al. Single-cell transcriptomics reveal potent extrafollicular B cell response linked with granzyme K+ CD8 T cell activation in lupus kidney[J]. Ann Rheum Dis, 2024: ard-2024-225876.
|
| [31] |
Schoenaker MHD, Henriet SS, Zonderland J, et al. Immunodeficiency in bloom's syndrome[J]. J Clin Immunol, 2018, 38(1): 35-44.
doi: 10.1007/s10875-017-0454-y
pmid: 29098565
|