[1] |
Wu T, Dai Y. Tumor microenvironment and therapeutic response[J]. Cancer Lett, 2017, 387: 61-68.
doi: S0304-3835(16)30015-5
pmid: 26845449
|
[2] |
Li G, Qin Z, Chen Z, et al. Tumor microenvironment in treatment of glioma[J]. Open Med, 2017, 12(1): 247-251.
doi: 10.1515/med-2017-0035
URL
|
[3] |
Petruzzi MN, Cherubini K, Salum FG, et al. Role of tumour-associated macrophages in oral squamous cells carcinoma progression: an update on current knowledge[J]. Diagn Pathol, 2017, 12(1): 32.
doi: 10.1186/s13000-017-0623-6
pmid: 28381274
|
[4] |
Monjazeb AM, Zamora AE, Grossenbacher SK, et al. Immunoediting and antigen loss: overcoming the achilles heel of immunotherapy with antigen non-specific therapies[J]. Front Oncol, 2013, 3: 197.
doi: 10.3389/fonc.2013.00197
pmid: 23898464
|
[5] |
Li X, Bu W, Meng L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC[J]. Exp Cell Res, 2019, 378(2): 131-138.
doi: S0014-4827(19)30106-5
pmid: 30857971
|
[6] |
Dudley AC. Tumor endothelial cells[J]. Cold Spring Harb Perspect Med, 2012, 2(3): a006536.
|
[7] |
Nagy JA, Chang SH, Dvorak AM, et al. Why are tumour blood vessels abnormal and why is it important to know[J]? Br J Cancer, 2009, 100(6): 865-869.
doi: 10.1038/sj.bjc.6604929
|
[8] |
Hida K, Maishi N, Annan DA, et al. Contribution of tumor endothelial cells in cancer progression[J]. Int J Mol Sci, 2018, 19(5): E1272.
|
[9] |
Monteiro LN, Rodrigues MA, Gomes DA, et al. Tumour-associated macrophages: relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours[J]. Vet J, 2018, 234: 119-125.
doi: S1090-0233(18)30057-1
pmid: 29680383
|
[10] |
Carty F, Mahon BP, English K. The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents[J]? Clin Exp Immunol, 2017, 188(1): 1-11.
doi: 10.1111/cei.12929
pmid: 28108980
|
[11] |
Kim J, Bae JS. Tumor-associated macrophages and neutrophils in tumor microenvironment[J]. Mediators Inflamm, 2016, 2016: 6058147.
|
[12] |
Rath M, Müller I, Kropf P, et al. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages[J]. Front Immunol, 2014, 5: 532.
doi: 10.3389/fimmu.2014.00532
pmid: 25386178
|
[13] |
Rabold K, Netea MG, Adema GJ, et al. Cellular metabolism of tumor-associated macrophages-functional impact and consequences[J]. FEBS Lett, 2017, 591(19): 3022-3041.
doi: 10.1002/feb2.2017.591.issue-19
URL
|
[14] |
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563.
doi: 10.1038/nature13490
|
[15] |
Yao J, Du Z, Li Z, et al. 6-Gingerol as an arginase inhibitor prevents urethane-induced lung carcinogenesis by reprogramming tumor supporting M2 macrophages to M1 phenotype[J]. Food Funct, 2018, 9(9): 4611-4620.
doi: 10.1039/c8fo01147h
pmid: 30151521
|
[16] |
Oft M. IL-10: master switch from tumor-promoting inflammation to antitumor immunity[J]. Cancer Immunol Res, 2014, 2(3): 194-199.
doi: 10.1158/2326-6066.CIR-13-0214
pmid: 24778315
|
[17] |
Kubota K, Moriyama M, Furukawa S, et al. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma[J]. Sci Rep, 2017, 7(1): 1755.
doi: 10.1038/s41598-017-01661-z
pmid: 28496107
|
[18] |
Zhang Y, Yu G, Chu H, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis[J]. Mol Cell, 2018, 71(2): 201-215.
doi: S1097-2765(18)30498-2
pmid: 30029001
|
[19] |
D'Incalci M, Badri N, Galmarini CM, et al. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment[J]. Br J Cancer, 2014, 111(4): 646-650.
doi: 10.1038/bjc.2014.149
|
[20] |
Kubota Y, Takubo K, Shimizu T, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis[J]. J Exp Med, 2009, 206(5): 1089-1102.
doi: 10.1084/jem.20081605
URL
|
[21] |
Deng R, Wang SM, Yin T, et al. Inhibition of tumor growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice[J]. Oncol Res, 2013, 20(10): 473-482.
pmid: 24308158
|
[22] |
Sośnicki S, Kapral M, Węglarz L. Molecular targets of metformin antitumor action[J]. Pharmacol Rep, 2016, 68(5): 918-925.
doi: 10.1016/j.pharep.2016.04.021
pmid: 27362768
|
[23] |
Ding L, Liang G, Yao Z, et al. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages[J]. Oncotarget, 2015, 6(34): 36441-36455.
doi: 10.18632/oncotarget.5541
pmid: 26497364
|
[24] |
Liu Y, Cao X. The origin and function of tumor-associated macrophages[J]. Cell Mol Immunol, 2015, 12(1): 1-4.
doi: 10.1038/cmi.2014.83
pmid: 25220733
|