[1] Venables, PJ. Management of patients presenting with Sjogren's syndrome[J]. Best Pract Res Clin Rheumatol, 2006, 20(4):791-807.
[2] Fox RI. Sjogren's syndrome[J]. Lancet, 2005, 366(9482):321-331.
[3] Rasmussen A, Ice JA, Li H, et al. Comparison of the American-European Consensus Group Sjogren's syndrome classification criteria to newly proposed American College of Rheumatology criteria in a large, carefully characterised sicca cohort[J]. Ann Rheum Dis, 2014, 73(1):31-38.
[4] Shiboski SC, Shiboski CH, Criswell H, et al. American College of Rheumatology classification criteria for Sjogren's syndrome: a data-driven, expert consensus approach in the Sjogren's International Collaborative Clinical Alliance cohort[J]. Arthritis Care Res (Hoboken), 2012, 64(4):475-487.
[5] Moutsopoulos HM. Sjogren's syndrome: a forty-year scientific journey[J]. J Autoimmun, 2014, 51:1-9.
[6] Takei M, Shiraiwa H, Azuma T, et al. The possible etiopathogenic genes of Sjogren's syndrome[J]. Autoimmun Rev, 2005, 4(7):479-484.
[7] Gottenberg, JE, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome[J]. Proc Natl Acad Sci U S A, 2006, 103(8):2770-2775.
[8] Ice JA. Li H, Adrianto I, et al. Genetics of Sjogren's syndrome in the genome-wide association era[J]. J Autoimmun, 2012, 39(1-2):57-63.
[9] Triantafyllopoulou A, Moutsopoulos H. Persistent viral infection in primary Sjogren's syndrome: review and perspectives[J]. Clin Rev Allergy Immunol, 2007, 32(3):210-214.
[10] Li J, Wang X, Zhang F, et al. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases[J]. Pharmacol Ther, 2013, 138(3):441-451.
[11] Mavragani CP, Crow MK. Activation of the type I interferon pathway in primary Sjogren's syndrome[J]. J Autoimmun, 2010, 35(3):225-231.
[12] Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7): 499-511.
[13] Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408(6813):740-745.
[14] Savarese E, Chae OW, Trowitzsch S, et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7[J]. Blood, 2006, 107(8):3229-3234.
[15] Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9 [J]. J Clin Invest, 2005, 115(2):407-417.
[16] Guerrier T, Le Pottier L, Devauchelle V, et al. Role of Toll-like receptors in primary Sjogren's syndrome with a special emphasis on B-cell maturation within exocrine tissues[J]. J Autoimmun, 2012, 39(1-2):69-76.
[17] Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword[J]. Nat Rev Immunol, 2003, 3(9):745-756.
[18] Dodeller F, Schulze-Koops H. The p38 mitogen-activated protein kinase signaling cascade in CD4 T cells[J]. Arthritis Res Ther, 2006, 8(2):205.
[19] Dominguez C, Powers DA, Tamayo N. p38 MAP kinase inhibitors: many are made, but few are chosen[J]. Curr Opin Drug Discov Devel, 2005, 8(4):421-430.
[20] Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies[J]. Arthritis Rheum, 2009, 60(5):1232-1241.
[21] Zheng L, Zhang Z, Yu C, et al. Expression of Toll-like receptors 7, 8, and 9 in primary Sjogren's syndrome[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 109(6):844-850.
[22] Zheng L, Zhang Z, Yu C, et al. Association between IFN-alpha and primary Sjogren's syndrome[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(1):e12-e18.
[23] Willeke PH, Schotte H, Schluter B, et al. Interleukin 1beta and tumour necrosis factor alpha secreting cells are increased in the peripheral blood of patients with primary Sjogren's syndrome[J]. Ann Rheum Dis, 2003, 62(4):359-362.
[24] Greenspan JS, Daniels TE, Talal N, et al. The histopathology of Sjogren's syndrome in labial salivary gland biopsies[J]. Oral Surg Oral Med Oral Pathol, 1974,37(2):217-229.
[25] Nakamura H, Kawakami A, Yamasaki S, et al. Expression of mitogen activated protein kinases in labial salivary glands of patients with Sjogren's syndrome[J]. Ann Rheum Dis, 1999, 58(6):382-385.
[26] Ping L, Ogawa N, Zhang Y, et al. p38 mitogen-activated protein kinase and nuclear factor-kappaB facilitate CD40-mediated salivary epithelial cell death[J]. J Rheumatol, 2012, 39(6):1256-1264.
[27] Cha S, Peck AB, Humphreys-Beher MG. Progress in understanding autoimmune exocrinopathy using the non-obese diabetic mouse: an update[J]. Crit Rev Oral Biol Med, 2002, 13(1):5-16.
[28] Chiorini JA, Cihakova D, Ouellette CE, et al. Sjogren syndrome: advances in the pathogenesis from animal models[J]. J Autoimmun, 2009, 33(3-4):190-196.
[29] Cha S, Nagashima H, Brown VB, et al. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjogren's syndrome) on a healthy murine background[J]. Arthritis Rheum, 2002, 46(5):1390-1398.
[30] Robinson CP, Yamachika S, Bounous DI, et al. A novel NOD-derived murine model of primary Sjogren's syndrome[J]. Arthritis Rheum, 1998, 41(1):150-156.
[31] Lindqvist AK, Nakken B, Sundler M, et al. Influence on spontaneous tissue inflammation by the major histocompatibility complex region in the nonobese diabetic mouse[J]. Scand J Immunol, 2005, 61(2):119-127.
[32] Ridgway WM, Peterson LB, Todd JA, et al. Gene-gene interactions in the NOD mouse model of type 1 diabetes[J]. Adv Immunol, 2008, 100:151-175.
[33] Yamano S, Atkinson JC, Baum BJ, et al. Salivary gland cytokine expression in NOD and normal BALB/c mice[J]. Clin Immunol, 1999, 92(3):265-275. |