[1] Gimble JM. Adipose tissue as a stem cell source for musculoskeletal regeneration[J]. Front in Biosci, 2011, S3(1):69-81.
[2] Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta -Catenin[J]. Science, 2002, 296(5573):1644-1646.
[3] 刘娜, 邓蔓菁, 刘鲁川. Wnt/β-catenin信号通路在人牙周膜干细胞成骨分化过程中的作用[C]. 全国第八次牙体牙髓病学学术会议论文汇编. 2011,200-201.
[4] Li HX, Luo X, Liu RX, et al. Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells[J]. Mol Cell Endocrinol , 2008, 291(1-2):116-124.
[5] Okada K, Ye YQ, Taniguchi K, et al. Vialinin A is a ubiquitin-specific peptidase inhibitor[J]. Bioorg Med Chem Lett, 2013, 23(15):4328-4331.
[6] Xie C, Koshino H, Esumi Y, et al. Vialinin B, a novel potent inhibitor of TNF-α production, isolated from an edible mushroom, Thelephora vialis[J]. Bioorg Med Chem Lett , 2006, 16(20):5424-5426.
[7] Xie C, Koshino H, Esumi Y, et al. Vialinin A, a novel 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenger from an edible mushroom in China[J]. Biosci Biotechnol Biochem, 2005, 69(12):2326-2332.
[8] Ghali O, Chauveau C, Hardouin P, et al. TNF-α’s effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression[J]. J Bone Miner Res, 2010, 25(7):1616-1626.
[9] Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix[J]. J Cell Physiol, 1990, 143(3):420-430.
[10] Chen Q, Shou P, Zhang L, et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells[J]. Stem Cells, 2014, 32(2):327-337.
[11] 冯顶丽, 卓丽丹, 芦笛, 等. 大鼠棕色脂肪干细胞与白色脂肪干细胞成骨能力的比较[J]. 中华口腔医学杂志, 2018, 7,397-401.
[12] Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell, 2005, 123(5):773-786.
[13] Lui TT, Lacroix C, Ahmed SM, et al. The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling[J]. Mol Cell Biol, 2011, 31(10):2053-2065.
[14] Oh E, Kim JY, Sung D, et al. Inhibition of ubiquitin-specific protease 34 (USP34) induces epithelial-mesenchymal transition and promotes stemness in mammary epithelial cells[J]. Cell Signal, 2017, 36:230-239.
[15] Liu J, Zhu H, Zhong N, et al. Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells[J]. Int J Oncol, 2016, 49(6):2549-2557.
[16] Flügel D, Görlach A, Kietzmann T. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α[J]. Blood, 2012, 119(5):1292-1301.
[17] Chou CK, Chang YT, Korinek M, et al. The regulations of deubiquitinase USP15 and its pathophysiological mechanisms in diseases[J]. Int J Mol Sci, 2017, 18(3), pil:E483.
[18] Oikonomaki M, Hegi ME. 343: Deciphering the role of ubiquitin specific peptidase 15 (USP15) in human glioblastoma[J]. Eur J Cancer, 2014, 50:S82.
[19] Madan B, Walker MP, Young R, et al. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds[J]. Proc Natl Acad Sci U S A, 2016, 113(21):E2945-2954.
[20] Mukai A, Yamamoto-Hino M, Awano W, et al. Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt[J]. Embo J, 2010, 29(13):2114-2125.
[21] Xu D, Liu J, Fu T, et al. USP25 regulates Wnt signaling by controlling the stability of tankyrases[J]. Genes Dev, 2017, 31(10):1024-1035.
[22] An T, Gong Y, Li X, et al. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth[J]. Biochem Pharmacol, 2017, 131:29-39.
[23] Shi J, Liu Y, Xu X, et al. Deubiquitinase USP47/UBP64E regulates β-Catenin ubiquitination and degradation and plays a positive role in Wnt signaling[J]. Mol Cell Biol, 2015, 35(19):3301-3311.
[24] Yun SI, Kim HH, Yoon JH, et al. Ubiquitin specific protease 4 positively regulates the WNT/β‐catenin signaling in colorectal cancer[J]. Mol Oncol, 2015, 9(9):1834-1851.
|