[1] |
Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis[J]. JAMA, 1992, 267(9): 1244-1252.
doi: 10.1001/jama.1992.03480090092034
URL
|
[2] |
Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders[J]. Trends Cogn Sci, 2012, 16(1):61-71.
doi: 10.1016/j.tics.2011.12.011
pmid: 22197477
|
[3] |
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses[J]. Nat Rev Neurosci, 2009, 10(6):397-409.
doi: 10.1038/nrn2647
pmid: 19469025
|
[4] |
Berger JM, Singh P, Khrimian L, et al. Mediation of the acute stress response by the skeleton[J]. Cell Metab, 2019, 30(5): 890-902.
doi: S1550-4131(19)30441-3
pmid: 31523009
|
[5] |
Saczuk K, Lapinska B, Wilmont P, et al. Relationship between sleep bruxism, perceived stress, and coping strategies[J]. Int J Environ Res Public Health, 2019, 16(17):e3193.
|
[6] |
Salgueiro MDCC, Bortoletto CC, Horliana ACR, et al. Evaluation of muscle activity, bite force and salivary cortisol in children with bruxism before and after low level laser applied to acupoints: study protocol for a randomised controlled trial[J]. BMC Complement Altern Med, 2017, 17(1): 391.
doi: 10.1186/s12906-017-1905-y
URL
|
[7] |
Bao AM, Swaab DF. The human hypothalamus in mood disorders: the HPA axis in the center[J]. IBRO Rep, 2019, 6: 45-53.
|
[8] |
Myers B, Scheimann JR, Franco-Villanueva A, et al. Ascending mechanisms of stress integration: implications for brainstem regulation of neuroendocrine and behavioral stress responses[J]. Neurosci Biobehav R, 2017, 74(PtB):366-375.
doi: 10.1016/j.neubiorev.2016.05.011
URL
|
[9] |
Kovacs KJ. CRH: the link between hormonal-, metabolic- and behavioral responses to stress[J]. J Chem Neuroanat, 2013, 54:25-33.
doi: 10.1016/j.jchemneu.2013.05.003
pmid: 23774011
|
[10] |
Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle[J]. J Neurosci, 1981, 1(8):876-886.
pmid: 7346592
|
[11] |
Iimori K, Tanaka M, Kohno Y, et al. Psychological stress enhances noradrenaline turnover in specific brain regions in rats[J]. Pharmacol Biochem Behav, 1982, 16(4):637-640.
doi: 10.1016/0091-3057(82)90429-4
URL
|
[12] |
Bundzikova-Osacka J, Ghosal S, Packard BA, et al. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats[J]. Stress, 2015, 18(2):221-232.
doi: 10.3109/10253890.2015.1013531
pmid: 25765732
|
[13] |
Plotsky PM, Cunningham ET Jr, Widmaier EP. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion[J]. Endocr Rev, 1989, 10(4):437-458.
pmid: 2558876
|
[14] |
Flak JN, Myers B, Solomon MB, et al. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress[J]. Eur J Neurosci, 2014, 39(11):1903-1911.
doi: 10.1111/ejn.12587
pmid: 24766138
|
[15] |
Uchida K, Kobayashi D, Das G, et al. Participation of the prolactin-releasing peptide-containing neurones in caudal medulla in conveying haemorrhagic stress-induced signals to the paraventricular nucleus of the hypothalamus[J]. J Neuroendocrinol, 2010, 22(1):33-42.
doi: 10.1111/j.1365-2826.2009.01935.x
pmid: 19912474
|
[16] |
Yamauchi N, Takahashi D, Sugimura YK, et al. Activation of the neural pathway from the dorsolateral bed nucleus of the stria terminalis to the central amygdala induces anxiety-like behaviors[J]. Eur J Neurosci, 2018, 48(9):3052-3061.
doi: 10.1111/ejn.14165
pmid: 30240530
|
[17] |
Hernandez VS, Hernandez OR, Perez de la Mora M, et al. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping[J]. Front Neural Circuits, 2016, 10:92.
|
[18] |
Huang TN, Hsueh YP. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders[J]. Front Neurosci, 2015, 9:406.
|
[19] |
Kim MJ, Loucks RA, Palmer AL, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety[J]. Behav Brain Res, 2011, 223(2):403-410.
doi: 10.1016/j.bbr.2011.04.025
pmid: 21536077
|
[20] |
Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation[J]. Neurosci Biobehav Rev, 2012, 36(7):1773-1802.
doi: 10.1016/j.neubiorev.2011.12.014
pmid: 22230704
|
[21] |
Lundy RF Jr, Norgren R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons[J]. J Neurophysiol, 2004, 91(3):1143-1157.
pmid: 14627662
|
[22] |
Maren S. The amygdala, synaptic plasticity, and fear memory[J]. Ann Ny Acad Sci, 2003, 985(1):106-113.
doi: 10.1111/nyas.2003.985.issue-1
URL
|
[23] |
Curtis AL, Bello NT, Connolly KR, et al. Corticotropin-releasing factor neurones of the central nucleus of the amygdala mediate locus coeruleus activation by cardiovascular stress[J]. J Neuroendocrinol, 2002, 14(8):667-682.
pmid: 12153469
|
[24] |
Zheng Y, Fan W, Zhang X, et al. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus[J]. Epigenetics, 2016, 11(2):150-162.
doi: 10.1080/15592294.2016.1146850
pmid: 26890656
|
[25] |
Ivy AS, Rex CS, Chen Y, et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors[J]. J Neurosci, 2010, 30(39):13005-13015.
doi: 10.1523/JNEUROSCI.1784-10.2010
pmid: 20881118
|
[26] |
Chowdhury GM, Fujioka T, Nakamura S. Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress[J]. Brain Res Bull, 2000, 52(3):171-182.
pmid: 10822158
|
[27] |
McElvain LE, Friedman B, Karten HJ, et al. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions[J]. Neuroscience, 2018, 368:152-170.
doi: S0306-4522(17)30600-0
pmid: 28843993
|
[28] |
Henssen DJ, Kurt E, Kozicz T, et al. New insights in trigeminal anatomy: a double orofacial tract for nociceptive input[J]. Front Neuroanat, 2016, 10:53.
doi: 10.3389/fnana.2016.00053
pmid: 27242449
|
[29] |
Robert C, Bourgeais L, Arreto CD, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches[J]. J Neurosci, 2013, 33(20):8827-8840.
doi: 10.1523/JNEUROSCI.0439-13.2013
pmid: 23678125
|
[30] |
Castro A, Raver C, Li Y, et al. Cortical regulation of nociception of the trigeminal nucleus caudalis[J]. J Neurosci, 2017, 37(47):11431-11440.
doi: 10.1523/JNEUROSCI.3897-16.2017
pmid: 29066554
|
[31] |
Van Daele DJ, Fazan VP, Agassandian K, et al. Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons[J]. Neuroscience, 2011, 177:93-113.
doi: 10.1016/j.neuroscience.2010.12.063
pmid: 21211549
|
[32] |
Stanek E, Cheng S, Takatoh J, et al. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination[J]. Elife, 2014, 3:e02511.
doi: 10.7554/eLife.02511
URL
|
[33] |
Fort P, Luppi PH, Sakai K, et al. Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat trigeminal motor nucleus: a double-labeling study with cholera-toxin as a retrograde tracer[J]. J Comp Neurol, 1990, 301(2):262-275.
pmid: 1702107
|
[34] |
Grzanna R, Chee WK, Akeyson EW. Noradrenergic projections to brainstem nuclei: evidence for differential projections from noradrenergic subgroups[J]. J Comp Neurol, 1987, 263(1):76-91.
pmid: 2822772
|
[35] |
Yasui Y, Tsumori T, Oka T, et al. Amygdaloid axon terminals are in contact with trigeminal premotor neurons in the parvicellular reticular formation of the rat medulla oblongata[J]. Brain Res, 2004, 1016(1):129-134.
pmid: 15234261
|
[36] |
Han W, Tellez LA, Rangel MJ Jr, et al. Integrated control of predatory hunting by the central nucleus of the amygdala[J]. Cell, 2017, 168(1-2):311-324.
doi: S0092-8674(16)31743-3
pmid: 28086095
|
[37] |
Notsu K, Tsumori T, Yokota S, et al. Posterior lateral hypothalamic axon terminals are in contact with trigeminal premotor neurons in the parvicellular reticular formation of the rat medulla oblongata[J]. Brain Res, 2008, 1244:71-81.
doi: 10.1016/j.brainres.2008.09.076
pmid: 18948090
|
[38] |
Sato C, Sato S, Takashina H, et al. Bruxism affects stress responses in stressed rats[J]. Clin Oral Investig, 2010, 14(2):153-160.
doi: 10.1007/s00784-009-0280-6
URL
|
[39] |
Meuwly C, Golanov E, Chowdhury T, et al. Trigeminal cardiac reflex: new thinking model about the definition based on a literature review[J]. Medicine (Baltimore), 2015, 94(5):e484.
doi: 10.1097/MD.0000000000000484
URL
|
[40] |
Ono Y, Lin HC, Tzen KY, et al. Active coping with stress suppresses glucose metabolism in the rat hypothalamus[J]. Stress, 2012, 15(2):207-217.
doi: 10.3109/10253890.2011.614296
pmid: 21936685
|
[41] |
Furuzawa M, Chen H, Fujiwara S, et al. Chewing ameliorates chronic mild stress-induced bone loss in senescence-accelerated mouse (SAMP8), a murine model of senile osteoporosis[J]. Exp Gerontol, 2014, 55:12-18.
doi: 10.1016/j.exger.2014.03.003
pmid: 24607548
|
[42] |
Hori N, Yuyama N, Tamura K. Biting suppresses stress-induced expression of corticotropin-releasing factor (CRF) in the rat hypothalamus[J]. J Dent Res, 2004, 83(2):124-128.
pmid: 14742649
|
[43] |
Sasaguri K, Kikuchi M, Hori N, et al. Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus[J]. Neurosci Lett, 2005, 383(1-2):160-164.
pmid: 15876492
|
[44] |
Sugrue A, DeSimone CV, Gaba P, et al. Grinding to a halt: stimulation of the trigeminal cardiac reflex from severe bruxism[J]. HeartRhythm Case Rep, 2018, 4(8):329-331.
doi: 10.1016/j.hrcr.2017.06.013
pmid: 30112280
|
[45] |
Tahara Y, Sakurai K, Ando T. Influence of chewing and clenching on salivary cortisol levels as an indicator of stress[J]. J Prosthodont, 2007, 16(2):129-135.
doi: 10.1111/j.1532-849X.2007.00178.x
pmid: 17362423
|
[46] |
Ding L, Gao R, Xiong XQ, et al. GABA in paraventricular nucleus regulates adipose afferent reflex in rats[J]. PLoS One, 2015, 10(8):e0136983.
doi: 10.1371/journal.pone.0136983
URL
|
[47] |
Keen-Rhinehart E, Michopoulos V, Toufexis DJ, et al. Continuous expression of corticotropin-releasing factor in the central nucleus of the amygdala emulates the dysregulation of the stress and reproductive axes[J]. Mol Psychiatry, 2009, 14(1):37-50.
doi: 10.1038/mp.2008.91
|
[48] |
Suzuki A, Iinuma M, Hayashi S, et al. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring[J]. Brain Res, 2016, 1651:36-43.
doi: S0006-8993(16)30615-1
pmid: 27613358
|