[1] Melcher AH. On the repair potential of periodontal tissues[J]. J Periodontol, 1976, 47(5):256-260. [2] Xie H, Liu H. A novel mixed-type stem cell pellet for cementum/periodontal ligament-like complex[J]. J Periodontol, 2012, 83(6):805-815.
[3] 孙传明, 刘宏伟. 两种细胞膜片对牙生物性种植体牙周再生影响的动物实验[J]. 中华口腔医学杂志, 2014, 49(2):84-88.
[4] 安康康,刘宏伟. 骨髓间充质干细胞和牙周膜干细胞膜片体内活性的动物实验[J]. 中华口腔医学, 2014, 49(11):682-687.
[5] Zhou LL, Liu HW, Wen XX, et al. Involvement of bone marrow stem cells in periodontal wound healing[J]. Chin J Dent Res, 2014, 17(2):105-110.
[6] Noden DM. Patterns and organization of craniofacial skeletogenic and myogenic mesenchyme: aperspective[J]. Prog Clin Biol Res, 1982, 101:167-203.
[7] Ferguson CM, Miclau T, Hu D, et al. Common molecular pathways in skeletal morphogenesis and repair[J]. Ann N Y Acad Sci, 1998, 857:33-42.
[8] Ferguson C, Alpern E, Miclau T, et al. Does adult fracture repair recapitulate embryonic skeletal formation[J]? Mech Dev,1999, 87(1-2):57-66.
[9] de Peppo GM, Sjovall P, Lenneras M, et al. Osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective[J].Tissue Eng Part A, 2010, 16(11):3413-3426.
[10] Kawai T, Katagiri W, Osugi M, et al. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration[J].Cytotherapy, 2015, 17(4):369-381.
[11] Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells[J].J Cell Biochem Suppl, 2002, 38:7-12.
[12] Boxall SA, Jones E. Markers for characterization of bone marrow multipotential stromal cells[J]. Stem Cells Int, 2012:975871.
[13] Leucht P, Kim JB, Amasha R, et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development, 2008, 135(17):2845-2854.
[14] Akintoye SO, Lam T, Shi S,et al. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals[J]. Bone, 2006, 38(6):758-768.
[15] Heo JS, Lee SY, Lee JC. Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts[J]. Mol Cells, 2010, 30(5):449-454.
[16] Quarto N, Behr B, Longaker MT. Opposite spectrum of activity of canonical Wnt signaling in the osteogenic context of undifferentiated and differentiated mesenchymal cells: implicatious for tissue engineering[J]. Tissue Eng Part A, 2010, 16(10):3185-3197.
[17] Li S, Quarto N, Senarath-Yapa K, et al. Enhanced activation of canonical Wnt signaling confers mesoderm-derived parietal bone with similar osteogenic and skeletal healing capacity to neural crest-derived frontal bone[J]. PLoS One, 2015, 10(10):e0138059.
[18] Arnsdorf EJ, Tummala P, Jacobs CR. Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate[J]. PLoS One, 2009, 4(4):e5388.
[19] Lu C, Wan Y, Cao J, et al. Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification[J].Bone, 2013, 53(2):566-574.
[20] Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA, et al. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin[J]. Mol Cell Biol, 2004, 24(11):4757-4768.
[21] Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton[J]. Science, 2003, 301(5631):363-367.
[22] Swinehart IT, Schlientz AJ, Quintanilla CA, et al. Hox11 genes are required for regional patterning and integration of muscle, tendon and bone[J]. Development, 2013, 140(22):4574-4582.
[23] 金淑清, 浦予飞, 裘莹. HOX基因的研究进展[J]. 癌症进展, 2011, 9(2):154-158.
[24] Gross S, Krause Y, Wuelling M, et al. Hoxa11 and Hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice[J]. PLoS One, 2012, 7(8):e43553.
[25] Otto F, Lubbert M, Stock M. Upstream and downstream targets of RUNX proteins[J]. J Cell Biochem, 2003, 89(1):9-18.
[26] Komori T. Regulation of skeletal development by the Runx family of transcription factors[J]. J Cell Biochem, 2005, 95(3):445-453. |