[1] Colonna M, Wang Y. TREM-2 variants: new keys to decipher Alzheimer disease pathogenesis[J]. Nat Rev Neurosci, 2016, 17(4): 201-207.
[2] Kim H S, Kim D K, Kim A R, et al. Fyn positively regulates the activation of DAP12 and FcRgamma-mediated costimulatory signals by RANKL during osteoclastogenesis[J]. Cell Signal, 2012, 24(6): 1306-1314.
[3] Allcock R J, Barrow A D, Forbes S, et al. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44[J]. Eur J Immunol, 2003, 33(2): 567-577.
[4] Klesney-Tait J, Turnbull I R, Colonna M. The TREM receptor family and signal integration[J]. Nat Immunol, 2006, 7(12): 1266-1273.
[5] Turnbull I R, Gilfillan S, Cella M, et al. Cutting edge: TREM-2 attenuates macrophage activation[J]. J Immunol, 2006, 177(6):3520-3524.
[6] Cella M, Buonsanti C, Strader C, et al. Impaired differentiation of osteoclasts in TREM-2-deficient individuals[J]. J Exp Med, 2003, 198(4):645-651.
[7] Rucci N, Teti A. The "love-hate" relationship between osteoclasts and bone matrix[J]. Matrix Biol, 2016, 52/53/54:176-190.
[8] Tanaka S. RANKL-independent osteoclastogenesis: aLong-standing controversy[J]. J Bone Miner Res, 2017, 32(3): 431-433.
[9] Jacome-Galarza CE, Percin GI, Muller JT, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts[J]. Nature, 2019, 568(7753): 541-545.
[10] Teitelbaum SL. Bone resorption by osteoclasts[J]. Science, 2000, 289(5484): 1504-1508.
[11] Kalbasi Anaraki P, Patecki M, Tkachuk S, et al. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-kappaB pathway in osteoclasts[J]. J Bone Miner Res, 2015, 30(2): 379-388.
[12] Kitazawa R, Kinto-Shibahara S, Haraguchi R, et al. Activation of protein kinase C accelerates murine osteoclastogenesis partly via transactivation of RANK gene through functional AP-1 responsive element in RANK gene promoter[J]. Biochem Biophys Res Commun, 2019, 515(2): 268-274.
[13] Chen W, Zhu G, Tang J, et al. C/ebpal controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1 [J]. J Pathol, 2018, 244(3): 271-282.
[14] Zhang Y, Jiang P, Li W, et al. Calcineurin/NFAT signaling pathway mediates titanium particleinduced inflammation and osteoclast formation by inhibiting RANKL and MCSF in vitro [J]. Mol Med Rep, 2017, 16(6): 8223-8230.
[15] Kumar G, Roger P M. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection[J]. Int J Mol Sci, 2019, 20(20):5154.
[16] Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis [J]. Nature, 2004, 428(6984):758-763.
[17] Negishi-Koga T, Gober HJ, Sumiya E, et al. Immune complexes regulate bone metabolism through FcRγ signalling[J]. Nat Commun, 2015, 6:6637.
[18] Li S, Miller C H, Giannopoulou E, et al. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis[J]. J Clin Invest, 2014, 124(11):5057-5073.
[19] Zawawi MS, Dharmapatni AA, Cantley MD,et al. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation[J]. Biochem Biophys Res Commun, 2012, 427(2):404-409.
[20] Tomasello E, Vivier E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions[J]. Eur J Immunol, 2005, 35(6):1670-1677.
[21] Dube N, Marzinek JK, Glen RC, et al. The structural basis for membrane assembly of immunoreceptor signalling complexes[J]. J Mol Model, 2019, 25(9):277.
[22] Call ME, Wucherpfennig KW, Chou JJ. The structural basis for intramembrane assembly of an activating immunoreceptor complex[J]. Nat Immunol, 2010,11(11):1023-1029.
[23] Wei P, Zheng BK, Guo PR, et al. The association of polar residues in the DAP12 homodimer: TOXCAT and molecular dynamics simulation studies[J]. Biophys J, 2013, 104(7):1435-1444. [24] Cheng X, Im W. NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes[J]. Biophys J, 2012,102(7):L27-L29.
[25] Bouchon A, Hern?觃ndez-Munain C, Cella M,et al. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells[J]. J Exp Med, 2001,194(8):1111-1122.
[26] Dodd RB. An exTREMe disruption in Alzheimer's cleanup[J]. J Biol Chem, 2018,293(32):12647-12648.
[27] van Rees DJ, Szilagyi K, Kuijpers TW,et al. Immunoreceptors on neutrophils[J]. Semin Immunol, 2016,28(2):94-108.
[28] Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases[J]. Trends Mol Med, 2017, 23(6):512-533.
[29] Takegahara N, Takamatsu H, Toyofuku T, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis[J]. Nat Cell Biol, 2006,8(6):615-622.
[30] Hsieh CL, Koike M, Spusta SC, et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia[J]. J Neurochem, 2009,109(4):1144-1156.
[31] Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight[J]. Nat Rev Immunol, 2018,18(12):759-772.
[32] Takahashi K, Prinz M, Stagi M,et al. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis[J]. PLoS Med, 2007,4(4):e124.
[33] Cannon JP, O'Driscoll M, Litman GW. Specific lipid recognition is a general feature of CD300 and TREM molecules[J]. Immunogenetics, 2012,64(1):39-47.
[34] Bailey CC, DeVaux LB, Farzan M. The Triggering Receptor Expressed on Myeloid Cells 2 Binds Apolipoprotein E[J]. J Biol Chem, 2015,290(43):26033-26042.
[35] Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model[J]. Cell, 2015,160(6):1061-1071.
[36] Poliani PL, Wang Y, Fontana E, et al. TREM2 sustains microglial expansion during aging and response to demyelination[J]. J Clin Invest, 2015,125(5):2161-2170.
[37] Kelker MS, Foss TR, Peti W, et al. Crystal structure of human triggering receptor expressed on myeloid cells 1 (TREM-1) at 1.47 A[J]. J Mol Biol, 2004,342(4):1237-1248.
[38] Kober DL, Alexander-Brett JM, Karch CM, et al. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms[J]. Elife, 2016,5:e20391. |