[1] |
Embree MC, Chen M, Pylawka S, et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury[J]. Nat Commun, 2016, 7: 13073.
|
[2] |
秦浩洋, 黄顺, 季平, 等. YAP表达抑制对髁突软骨干细胞增殖和凋亡的影响[J]. 口腔医学研究, 2021, 37(11): 1017-1022.
doi: 10.13701/j.cnki.kqyxyj.2021.11.012
|
[3] |
Bi R, Chen K, Wang Y, et al. Regulating fibrocartilage stem cells via TNF-α/NF-κB in TMJ osteoarthritis[J]. J Dent Res, 2022, 101(3): 312-322.
|
[4] |
Bi R, Yin Q, Mei J, et al. Identification of human temporomandibular joint fibrocartilage stem cells with distinct chondrogenic capacity[J]. Osteoarthritis Cartilage, 2020, 28(6): 842-852.
|
[5] |
Hua BQ, Qiu J, Ye XP, et al. Intra-articular injection of a novel Wnt pathway inhibitor, SM04690, upregulates Wnt16 expression and reduces disease progression in temporomandibular joint osteoarthritis[J]. Bone, 2022, 158: 116372.
|
[6] |
Ruscitto A, Scarpa V, Morel M, et al. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis[J]. J Dent Res, 2020, 99(10): 1174-1181.
doi: 10.1177/0022034520924656
pmid: 32442041
|
[7] |
Owtad P, Park JH, Shen G, et al. The biology of TMJ growth modification: A review[J]. J Dent Res, 2013, 92(4): 315-321.
doi: 10.1177/0022034513476302
pmid: 23358678
|
[8] |
王灵芝. miRNA-21在周期性张应力诱导滑膜间充质干细胞成骨分化中的作用及其调控机制的研究[D]. 青岛: 青岛大学, 2022.
|
[9] |
Andress BD, Irwin RM, Puranam I, et al. A tale of two loads: Modulation of IL-1 induced inflammatory responses of meniscal cells in two models of dynamic physiologic loading[J]. Front Bioeng Biotechnol, 2022, 10: 837619.
|
[10] |
Shrivastava A, Hazarey PV, Kharbanda OP, et al. Stress distribution in the temporomandibular joint after mandibular protraction: A three-dimensional finite element study[J]. Angle Orthod, 2015, 85(2): 196-205.
doi: 10.2319/091913-690.1
pmid: 24901066
|
[11] |
Nickel JC, Iwasaki LR, Gonzalez YM, et al. Mechanobehavior and ontogenesis of the temporomandibular joint[J]. J Dent Res, 2018, 97(11): 1185-1192.
doi: 10.1177/0022034518786469
pmid: 30004817
|
[12] |
Huang LJ, Cai XY, Li H, et al. The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint[J]. Arch Oral Biol, 2015, 60(4): 622-630.
doi: 10.1016/j.archoralbio.2015.01.003
pmid: 25656086
|
[13] |
Papachristou D, Pirttiniemi P, Kantomaa T, et al. Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes[J]. Eur J Orthod, 2006, 28(1): 20-26.
|
[14] |
Tang GH, Rabie ABM. Runx2 regulates endochondral ossification in condyle during mandibular advancement[J]. J Dent Res, 2005, 84(2): 166-171.
pmid: 15668335
|
[15] |
Kaul R, O'Brien MH, Dutra E, et al. The effect of altered loading on mandibular condylar cartilage[J]. PLoS One, 2016, 11(7): e0160121.
|
[16] |
Liao LF, Zhang SX, Zhou GQ, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis[J]. J Cell Physiol, 2019, 234(4): 3436-3444.
doi: 10.1002/jcp.26761
pmid: 30387127
|
[17] |
Ma DD, Kou XX, Jin J, et al. Hydrostatic compress force enhances the viability and decreases the apoptosis of condylar chondrocytes through integrin-FAK-ERK/PI3K pathway[J]. Int J Mol Sci, 2016, 17(11): 1847.
|
[18] |
Cai SX, Zou YC, Zhao Y, et al. Mechanical stress reduces secreted frizzled-related protein expression and promotes temporomandibular joint osteoarthritis via Wnt/β-catenin signaling[J]. Bone, 2022, 161: 116445.
|
[19] |
Yin Q, Bi RY, Li HH, et al. Regulatory role of human fibrocartilage stem cells in condyle osteochondroma[J]. Cell Prolif, 2023, 56(1): e13342.
|
[20] |
Newton PT, Li L, Zhou BY, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate[J]. Nature, 2019, 567(7747): 234-238.
|
[21] |
Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018, 563(7730): 254-258.
|