[1] Timpl R, Sasaki T, Kostka G, et al. Fibulins: a versatile family of extracellular matrix proteins[J]. Nat Rev Mol Cell Biol, 2003, 4(6):479-489.
[2] Kobayashi N, Kostka G, Garbe J H, et al. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization [J]. J Biol Chem, 2007, 282(16):11805-11816.
[3] de Vega S, Iwamoto T, Nakamura T, et al. TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding [J]. J Biol Chem, 2007, 282(42):30878-30888.
[4] Ramaesh T, Bard J B. The growth and morphogenesis of the early mouse mandible: a quantitative analysis [J]. J Anat, 2003, 203(2):213-222.
[5] Jing Y, Zhou X, Han X, et al. Chondrocytes directly transform into bone cells in mandibular condyle growth [J]. J Dent Res, 2015, 94(12):1668-1675.
[6] Shen G, Darendeliler MA. The adaptive remodeling of condylar cartilage---a transition from chondrogenesis to osteogenesis [J]. J Dent Res, 2005, 84(8):691-699.
[7] Cooley M A, Fresco VM, Dorlon M E, et al. Fibulin-1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation [J]. Dev Dyn, 2012, 241(2):303-314.
[8] Hanada K, Vermeij M, Garinis GA, et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice [J]. Circ Res, 2007, 100(5):738-746.
[9] Wang X, LeMaire SA, Chen L, et al. Decreased expression of fibulin-5 correlates with reduced elastin in thoracic aortic dissection [J]. Surgery, 2005, 138(2):352-359.
[10] Paapstel K, Zilmer M, Eha J, et al. Association between fibulin-1 and aortic augmentation index in male patients with peripheral arterial disease[J]. Eur J Vasc Endovasc Surg, 2016, 51(1):76-82.
[11] Zhang HY, Timpl R, Sasaki T, et al. Fibulin-1 and fibulin-2 expression during organogenesis in the developing mouse embryo [J]. Dev Dyn, 1996, 205(3):348-364.
[12] Miosge N, Gotz W, Sasaki T, et al. The extracellular matrix proteins fibulin-1 and fibulin-2 in the early human embryo [J]. Histochem J, 1996, 28(2):109-116.
[13] Soemedi R, Wilson I J, Bentham J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91(3): 489-501.
[14] Russell M W, Raeker M O, Geisler S B, et al. Functional analysis of candidate genes in 2q13 deletion syndrome implicates FBLN7 and TMEM87B deficiency in congenital heart defects and FBLN7 in craniofacial malformations [J]. Hum Mol Genet, 2014, 23(16):4272-4284.
[15] Yu H C, Coughlin C R, Geiger E A, et al. Discovery of a potentially deleterious variant in TMEM87B in a patient with a hemizygous 2q13 microdeletion suggests a recessive condition characterized by congenital heart disease and restrictive cardiomyopathy[J]. Cold Spring Harb Mol Case Stud, 2016, 2(3):a000844.
[16] Riley KN, Catalano LM, Bernat JA, et al. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes[J]. Am J Med Genet A, 2015, 167A(11):2664-2673.
[17] Rudd MK, Keene J, Bunke B, et al. Segmental duplications mediate novel, clinically relevant chromosome rearrangements [J]. Hum Mol Genet, 2009, 18(16):2957-2962.
[18] Yamashiro Y, Papke CL, Kim J, et al. Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice[J]. Sci Signal, 2015, 8(399):ra105.
[19] Wenger SL, Bleigh OC, Hummel M. Cleft palate in a newborn with duplication 2(q13q23) [J]. Cleft Palate Craniofac J, 2004, 41(5):568-570. |