| [1] |
McAllister BS, Haghighat K. Bone augmentation techniques[J]. J Periodontol, 2007, 78(3): 377-396.
doi: 10.1902/jop.2007.060048
pmid: 17335361
|
| [2] |
Tan BW, Tang Q, Zhong YJ, et al. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration[J]. Int J Oral Sci, 2021, 13(1): 9.
doi: 10.1038/s41368-021-00113-9
pmid: 33727527
|
| [3] |
Yang RC, Cao DD, Suo JL, et al. Premature aging of skeletal stem/progenitor cells rather than osteoblasts causes bone loss with decreased mechanosensation[J]. Bone Res, 2023, 11(1): 35.
doi: 10.1038/s41413-023-00269-6
pmid: 37407584
|
| [4] |
Ueno M, Chiba Y, Matsumoto K, et al. Blood-brain barrier damage in vascular dementia[J]. Neuropathology, 2016, 36(2): 115-124.
doi: 10.1111/neup.12262
pmid: 26607405
|
| [5] |
Roig-Soriano J, Griñán-Ferré C, Espinosa-Parrilla JF, et al. AAV-mediated expression of secreted and transmembrane αKlotho isoforms rescues relevant aging hallmarks in senescent SAMP8 mice[J]. Aging Cell, 2022, 21(4): e13581.
|
| [6] |
Chandra A, Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. Int J Mol Sci, 2021, 22(7): 3553.
doi: 10.3390/ijms22073553
URL
|
| [7] |
Lin WM, Li QW, Zhang DT, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021, 9(1): 17.
doi: 10.1038/s41413-021-00141-5
pmid: 33723232
|
| [8] |
Aghaloo TL, Chaichanasakul T, Bezouglaia O, et al. Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010, 89(11): 1293-1298.
doi: 10.1177/0022034510378427
pmid: 20811069
|
| [9] |
Dong WJ, Zhang P, Fu Y, et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015, 230(3): 680-690.
doi: 10.1002/jcp.24792
pmid: 25200657
|
| [10] |
Boonen S, Dejaeger E, Vanderschueren D, et al. Osteoporosis and osteoporotic fracture occurrence and prevention in the elderly: A geriatric perspective[J]. Best Pract Res Clin Endocrinol Metab, 2008, 22(5): 765-785.
doi: 10.1016/j.beem.2008.07.002
pmid: 19028356
|
| [11] |
Ebersole JL, Graves CL, Gonzalez OA, et al. Aging, inflammation, immunity and periodontal disease[J]. Periodontol 2000, 2016, 72(1): 54-75.
doi: 10.1111/prd.12135
pmid: 27501491
|
| [12] |
Hodjat M, Khan F, Saadat KASM. Epigenetic alterations in aging tooth and the reprogramming potential[J]. Ageing Res Rev, 2020, 63: 101140.
|
| [13] |
Renvert S, Persson RE, Persson GR. Tooth loss and periodontitis in older individuals: Results from the Swedish National Study on Aging and Care[J]. J Periodontol, 2013, 84(8): 1134-1144.
doi: 10.1902/jop.2012.120378
pmid: 23088532
|
| [14] |
Zang Y, Song JH, Oh SH, et al. Targeting NLRP3 inflammasome reduces age-related experimental alveolar bone loss[J]. J Dent Res, 2020, 99(11): 1287-1295.
doi: 10.1177/0022034520933533
pmid: 32531176
|
| [15] |
Liu JT, Zhang J, Lin X, et al. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice[J]. J Clin Invest, 2022, 132(8): e148073.
|
| [16] |
Miyamoto M. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10[J]. Exp Gerontol, 1997, 32(1-2): 139-148.
doi: 10.1016/s0531-5565(96)00061-7
pmid: 9088911
|
| [17] |
Pelegrí C, Canudas AM, del Valle J, et al. Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence[J]. Mech Ageing Dev, 2007, 128(9): 522-528.
pmid: 17697702
|
| [18] |
Xiao H, Wang LF, Zhang T, et al. Periosteum progenitors could stimulate bone regeneration in aged murine bone defect model[J]. J Cell Mol Med, 2020, 24(20): 12199-12210.
doi: 10.1111/jcmm.v24.20
URL
|
| [19] |
Li KH, Liu LN, Liu HH, et al. Hippo/YAP1 promotes osteoporotic mice bone defect repair via the activating of Wnt signaling pathway[J]. Cell Signal, 2024, 116: 111037.
|
| [20] |
Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: Dynamic communities and host interactions[J]. Nat Rev Microbiol, 2018, 16(12): 745-759.
doi: 10.1038/s41579-018-0089-x
pmid: 30301974
|
| [21] |
Nikolich-Žugich J. The twilight of immunity: Emerging concepts in aging of the immune system[J]. Nat Immunol, 2018, 19(1): 10-19.
doi: 10.1038/s41590-017-0006-x
pmid: 29242543
|
| [22] |
Weng YT, Wang HC, Li L, et al. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment[J]. Redox Biol, 2021, 40: 101849.
|
| [23] |
Li Q, Wang HC, Liu LW, et al. Suppression of the NLRP3 inflammasome through activation of the transient receptor potential channel melastatin 2 promotes osteogenesis in tooth extraction sockets of periodontitis[J]. Am J Pathol, 2023, 193(2): 213-232.
doi: 10.1016/j.ajpath.2022.10.009
URL
|
| [24] |
Wu D, Weng Y, Feng Y, et al. Trem1 induces periodontal inflammation via regulating M1 polarization[J]. J Dent Res, 2022, 101(4): 437-447.
doi: 10.1177/00220345211044681
URL
|
| [25] |
Chen X, Zhu WW, Xu RY, et al. Geranylgeraniol restores zoledronic acid-induced efferocytosis inhibition in bisphosphonate-related osteonecrosis of the jaw[J]. Front Cell Dev Biol, 2021, 9: 770899.
|
| [26] |
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging[J]. Aging Cell, 2018, 17(1): e12709.
|
| [27] |
Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy[J]. Int J Mol Sci, 2016, 17(7): 1164.
doi: 10.3390/ijms17071164
URL
|
| [28] |
Benameur L, Charif N, Li YY, et al. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells[J]. Biomed Mater Eng, 2015, 25(1 Suppl): 41-46.
doi: 10.3233/BME-141247
pmid: 25538054
|
| [29] |
Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127.
|
| [30] |
顾艺婧, 傅稼耀, 武文婧, 等. 槲皮素通过抗骨相关细胞衰老作用治疗雌激素缺乏骨质疏松症的初步研究[J]. 同济大学学报(医学版), 2019, 40(3): 274-280.
|