[1] Teti A. Bone development: overview of bone cells and signaling[J]. Curr Osteoporos Rep, 2011, 9(4):264-273.
[2] SOROKIN S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells[J]. J Cell Biol, 1962, 15:363-377.
[3] Eggenschwiler JT, Anderson KV. Cilia and developmental signaling[J]. Annu Rev Cell Dev Biol, 2007, 23: 345-373.
[4] Fort C, Bonnefoy S, Kohl L, et al. Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length[J]. Journal of Cell Science, 2016, 129(15):3026-3041.
[5] Miller Kerry A, Ah-Cann Casey J, Welfare Megan F, et al. Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling jeune syndrome[J]. PLoS Genet, 2013, 9(8):e1003746.
[6] Haycraft CJ, Serra R. Chapter 11 cilia involvement in patterning and maintenance of the skeleton[J]. Current Topics in Developmental Biology, 2008, 85(08):303.
[7] Scherft JP, Daems WT. Single cilia in chondrocytes[J]. J Ultrastruct Res, 1967, 19(5):546-555.
[8] Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization[J]. J Cell Biol, 1972, 53(2): 494-509.
[9] DeRouen MC, Oro AE. The primary cilium: a small yet mighty organelle[J]. J Invest Dermatol, 2009, 129(2):264-265.
[10] Ishikawa H, Marshall WF. Ciliogenesis: building the cell's antenna[J]. Nat Rev Mol Cell Biol, 2011, 12(4): 222-234.
[11] Tummala P, Arnsdorf EJ, Jacobs CR. The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment[J]. Cell Mol Bioeng, 2010, 3(3):207-212.
[12] Satir P, Christensen ST. Overview of structure and function of mammalian cilia[J]. Annu Rev Physiol, 2007, 69: 377-400.
[13] Cole DG, Diener DR, Himelblau AL, et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons[J]. J Cell Biol, 1998, 141(4):993-1008.
[14] Stottmann RW, Tran PV, Turbe-Doan A, et al. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain[J]. Dev Biol, 2009, 335(1):166-178.
[15] Rosenbaum JL, Witman GB. Intraflagellar transport[J]. Nat Rev Mol Cell Biol, 2002, 3(11):813-825.
[16] Cole DG, Snell WJ. Snapshot: intraflagellar transport[J]. Cell, 2009, 137(4): 784-784.e1.
[17] Pazour GJ, Wilkerson CG, Witman GB. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport(IFT)[J]. J Cell Biol, 1998, 141(4): 979-992.
[18] Cole D G, Diener D R, Himelblau A L, et al. ChlamydomonasKinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in caenorhabditis elegans sensory neurons[J]. J Cell Biol, 1998, 141(4):993-1008.
[19] Piperno G, Siuda E, Henderson S, et al. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects[J]. J Cell Biol, 1998, 143(6):1591-1601.
[20] Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling[J]. Curr Top Dev Biol, 2008, 85:23-61.
[21] Lucker BF, Behal RH, Qin H, et al. Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits[J]. J Biol Chem, 2005, 280(30):27688-27696.
[22] Follit JA, Xu F, Keady BT, et al. Characterization of mouse IFT complex B[J]. Cell Motil Cytoskeleton, 2009, 66(8):457-468.
[23] Murcia NS, Richards WG, Yoder BK, et al. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination[J]. Development, 2000, 127(11):2347-2355.
[24] Friedland-Little JM, Hoffmann AD, Ocbina PJ, et al. A novel murine allele of Intraflagellar Transport Protein 172 causes a syndrome including VACTERL-like features with hydrocephalus[J]. Hum Mol Genet, 2011, 20(19):3725-3737.
[25] Stottmann RW, Tran PV, Turbe-Doan A, et al. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain[J]. Dev Biol, 2009, 335(1):166-178.
[26] Tran P V, Haycraft C J, Besschetnova T Y, et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia[J]. Nature Genetics, 2008, 40(4):403-410.
[27] Anderson CT, Castillo AB, Brugmann SA, et al. Primary cilia: cellular sensors for the skeleton[J]. Anat Rec (Hoboken), 2008, 291(9):1074-1078.
[28] Scherft JP, Daems WT. Single cilia in chondrocytes[J]. J Ultrastruct Res, 1967, 19(5):546-555.
[29] Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development[J]. J Bone Joint Surg Am, 2008, 90(Suppl 1):19-24.
[30] Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders[J]. Calcif Tissue Int, 2012, 90(2):69-75.
[31] Rosen V. BMP2 signaling in bone development and repair[J]. Cytokine Growth Factor Rev, 2009, 20(5-6): 475-480.
[32] Goetz S C, Ocbina P J R, Anderson K V. The Primary Cilium as a Hedgehog Signal Transduction Machine[J]. Methods in Cell Biology, 2009:199-222.
[33] Northcott PA, Shih DJ, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes[J]. Nature, 2012, 488(7409):49-56.
[34] Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network[J]. Sci Signal, 2012, 5(246): re6.
[35] Yang S, Wang C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis[J]. Bone, 2012, 51(3):407-417.
[36] St-Jacques B, Hammerschmidt M, McMahon AP. Indianhedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J]. Genes Dev, 1999, 13(16):2072-2086.
[37] Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling[J]. Development, 2000, 127(7):1337-1348.
[38] Chang CF, Serra R. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and-catenin activity in post-natal growth plate[J]. J Orthop Res, 2013, 31(3):350-356.
[39] Xie YF, Shi WG, Zhou J, et al. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium[J]. Bone, 2016, 93: 22-32.
[40] Ezratty EJ, Stokes N, Chai S, et al. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development[J]. Cell, 2011, 145(7):1129-1141.
[41] Federman M, Nichols G Jr. Bone cell cilia: vestigial or functional organelles[J]. Calcif Tissue Res, 1974, 17(1): 81-85.
[42] Uzbekov R E, Maurel D B, Aveline P C, et al. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium[J]. Microscopy and Microanalysis, 2012, 18(6):1430-1441.
[43] Ferrante MI, Giorgio G, Feather SA, et al. Identification of the gene for oral-facial-digital type I syndrome[J]. Am J Hum Genet, 2001, 68(3):569-576.
[44] Thiel C, Kessler K, Giessl A, et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski[J]. Am J Hum Genet, 2011, 88(1):106-114.
[45] Mortellaro C, Bello L, Pucci A, et al. Saldino-Mainzer syndrome: nephronophthisis, retinitis pigmentosa, and cone-shaped epiphyses[J]. J Craniofac Surg, 2010, 21(5): 1554-1556.
[46] Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations[J]. Am J Hum Genet, 2012, 90(5):864-870.
[47] Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease[J]. Hum Mutat, 2013, 34(5): 714-724.
[48] Rix S, Calmont A, Scambler PJ, et al. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia[J]. Hum Mol Genet, 2011, 20(7):1306-1314.
[49] Mill P, Lockhart PJ, Fitzpatrick E, et al. Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis[J]. Am J Hum Genet, 2011, 88(4):508-515.
[50] Walczak-Sztulpa J, Eggenschwiler J, Osborn D, et al. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene[J]. Am J Hum Genet, 2010, 86(6):949-956.
[51] Arts HH, Bongers EM, Mans DA, et al. C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome[J]. J Med Genet, 2011, 48(6):390-395.
[52] Yuan X, Cao J, He X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation[J]. Nat Commun, 2016, 7:11024.
[53] Wang Z, Wann AK, Thompson CL, et al. IFT88 influences chondrocyte actin organization and biomechanics[J]. Osteoarthr Cartil, 2016, 24(3):544-554. |