[1] Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(4):271-289.
[2] Parikh P, Patil V, Agarwal JP, et al. Guidelines for treatment of recurrent or metastatic head and neck cancer[J]. Indian J Cancer, 2014, 51(2):89-94.
[3] Chen ZM, Lin Z. Tea and human health: biomedical functions of tea active components and current issues[J]. J Zhejiang Univ Sci B, 2015, 16(2):87-102.
[4] Gan RY, Li HB, Sui ZQ, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Crit Rev Food Sci Nutr, 2018, 58(6):924-941.
[5] Ramshankar V, Krishnamurthy A. Chemoprevention of oral cancer: Green tea experience[J]. J Nat Sci Biol Med, 2014, 5(1):3-7.
[6] Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of Green tea catechins and anticancer drugs[J]. Cancer Sci, 2011, 102(2):317-323.
[7] 刘凤琼, 鄢灵君, 陈法, 等. 饮茶与牙龈癌发病关系的病例对照研究[J]. 肿瘤防治研究, 2017, 44(2):138-141.
[8] Tao L, Park JY, Lambert JD. Differential prooxidative effects of the Green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling[J]. Mol Nutr Food Res, 2015, 59(2):203-211.
[9] Hamakawa H, Nakashiro K, Sumida T, et al. Basic evidence of molecular targeted therapy for oral cancer andsalivary gland cancer[J]. Head Neck, 2008, 30(6):800-809.
[10] Nagumo T, Ito D, Tsukamoto H, et al. STAT3 as a target of molecular targeting therapy for oral cancer: Cell-based screening using inhibitor screening kits[J]. Asian Journal of Oral and Maxillofacial Surgery, 2011, 23(4):167-171.
[11] Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer[J]. BioMed Research International, 2014, 2014:1-23.
[12] Jain M, Kasetty S, Sridhara SU, et al. Apoptosis and its significance in oral diseases: an update[J]. Journal of Oral Diseases, 2013:1-11.
[13] Bascones-martínez A, Rodríguez-gutierrez C, Rodríguez-gómez E, et al. Evaluation of p53, caspase-3, Bcl-2, and Ki-67 markers in oral squamous cell carcinoma and premalignant epithelium in a sample from Alava Province (Spain)[J]. Med Oral Patol Oral Cir Bucal, 2013, 18(6):e846-e850.
[14] Wang XY, Simpson ER, Brown KA. P53: protection against tumor growth beyond effects on cell cycle and apoptosis[J]. Cancer Res, 2015, 75(23): 5001-5007.
[15] 赵艳, 吴坤. 死亡分子Fas/CD95与细胞凋亡[J]. 癌变.畸变.突变, 2001, 13(1):55-58.
[16] Irimie AI, Braicu C, Zanoaga O, et al. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells[J]. Onco Targets Ther, 2015, 8:461-470.
[17] Shin YS, Kang SG, Park JK, et al. Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin[J]. Phytomedicine, 2016, 23(12): 1344-1355.
[18] Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update[J]. Arch Toxicol, 2015, 89(3):289-317.
[19] Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882.
[20] Lee JC, Chung LC, Chen YJ, et al. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells[J]. Cancer Lett, 2015, 360(2):310-318.
[21] Chang CM, Chang PY, Tu MG, et al. Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2[J]. Oncol Rep, 2012, 28(5):1799-1807.
[22] Mayer IA, Arteaga CL.The PI3K/AKT pathway as a target for cancer teatment[J]. Annu Rev Med, 2016,67:11-28.
[23] 刘晓亮, 袁长吉, 庄平, 等. EGCG对口腔鳞癌细胞增殖及信号传导通路的影响[J]. 华中科技大学学报(医学版), 2013, 42(5):530-534.
[24] Vijayaraghavan S, Moulder S, Keyomarsi K, et al. Inhibiting CDK in cancer therapy: current evidence and future directions[J]. Target Oncol, 2018, 13(1):21-38.
[25] Massagué J. G1 cell-cycle control and cancer[J]. Nature, 2004, 432(7015):298-306.
[26] Jacob A., Prekeris R. The regulation of MMP targeting to invadopodia during cancer metastasis[J]. Front Cell Dev Biol, 2015, 3:4.
[27] Chen PN, Chu SC, Kuo WH, et al. Epigallocatechin-3 gallate inhibits invasion, epithelial-mesenchymal transition, and tumor growth in oral cancer cells[J]. J Agric Food Chem, 2011, 59(8):3836-3844.
[28] Egawa S, Iwai S, Iijima K, et al. Quantification of (?)-epigallocatechin-3-gallate inhibition of migration and invasion of oral squamous cell carcinoma cell lines using real-time cell analysis[J]. Showa Univ J Med Sci, 2015, 27(2):71-81.
[29] Lin HC, Wu CL, Chen YL, et al. High-level β1-integrin expression in a subpopulation of highly tumorigenic oral cancer cells[J]. Clin Oral Investig, 2014, 18(4):1277-1284.
[30] 陈丽莉, 苏俭生. EGCG对舌鳞癌细胞CAL-27的EGFR、67LR及VEGF表达的影响[J]. 口腔颌面外科杂志, 2012, 22(4):238-241.
[31] Weng LX, Wang GH, Yao H, et al. Epigallocatechin gallate inhibits the growth of salivary adenoid cystic carcinoma cells via the EGFR/Erk signal transduction pathway and the mitochondria apoptosis pathway[J]. Neoplasma, 2017, 64(4):563-570.
[32] Du BW, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer[J]. Molecules, 2016, 21(7):965.
[33] 陈震, 郭燕. E-cadherin和Vimentin在OSCC上皮-间质转化中的作用及表达[J]. 口腔医学研究, 2016, 32(8): 857-860.
[34] Lee SS, Tsai CH, Yu CC, et al. Correction: elevated snail expression mediates tumor progression in areca quid chewing-associated oral squamous cell carcinoma via reactive oxygen species[J]. PLoS One, 2013,8(7):e67985.
[35] Yu CC, Chen PN, Peng CY, et al. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis[J]. Oncotarget, 2016, 7(15):20180-20192.
|