[1] LeGeros RZ. Calcium phosphate-based osteoinductive materials[J]. Chem Rev, 2008, 108(11):4742-4753.
[2] Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.
[3] Liu Q, Huang SS, Matinlinna JP, et al. Insight into biological apatite: physiochemical properties and preparation approaches[J]. Biomed Res Int, 2013, 2013:929748.
[4] Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone[J]. Biomaterials, 2004, 25(6):987-994.
[5] Accorsi-Mendonca T, Conz MB, Barros TC, et al. Physicochemical characterization of two deproteinized bovine xenografts[J]. Braz Oral Res, 2008, 22(1):5-10.
[6] Liu Q, Chen ZT, Gu HJ, et al. Preparation and characterization of fluorinated porcine hydroxyapatite[J]. Dent Mater J, 2012, 31(5):742-750.
[7] Kim HM, Rey C, Glimcher MJ. Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature[J]. J Bone Miner Res, 1995, 10(10):1589-1601.
[8] Barakat NAM, Khalil KA, Sheikh FA, et al. Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp[J]. Mat Sci Eng C-Bio S, 2008, 28:1381-1387.
[9] Murugan R, Kumar TSS, Rao KP. Fluorinated bovine hydroxyapatite: preparation and characterization[J]. Mater Lett, 2002, 57(2):429-433.
[10] Kuhn LT, Grynpas MD, Rey CC, et al. A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages[J]. Calcif Tissue Int, 2008, 83(2):146-154.
[11] Kim SH, Shin JW, Park SA, et al. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone[J]. J Biomed Mater Res B Appl Biomater, 2004, 68(1):69-74.
[12] Figueiredo M, Fernando A, Martins G, et al. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone[J]. Ceram Int, 2010, 36:2383-2393.
[13] Su X, Sun K, Cui FZ, et al. Organization of apatite crystals in human woven bone[J]. Bone, 2003, 32(2):150-162.
[14] Weiner S, Price PA. Disaggregation of bone into crystals[J]. Calcif Tissue Int, 1986, 39(6):365-375.
[15] Murugan R, Ramakrishna S, Rao KP. Nanoporous hydroxy-carbonate apatite scaffold made of natural bone[J]. Mater Lett, 2006, 60(23):2844-2847.
[16] Janus AM, Faryna M, Haberko K, et al. Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones[J]. Microchim Acta, 2008, 161(3-4):349-353.
[17] Seo DS, Kim YG, Lee JK. Sintering and dissolution of bone ash-derived hydroxyapatite[J]. Met Mater-Int, 2010, 16(4):687-692.
[18] Lombardi M, Palmero P, Haberko K, et al. Processing of a natural hydroxyapatite powder: from powder optimization to porous bodies development[J]. J European Ceram Soc, 2011, 31(14):2513-2518.
[19] Haberko K, Bucko MM, Brzezińska-Miecznik J, et al. Natural hydroxyapatite-its behaviour during heat treatment[J]. J European Ceram Soc, 2006, 26(s 4-5):537-542.
[20] Sakae T, Mishima H, Kozawa Y. Changes in bovine dentin mineral with sodium-hypochlorite treatment[J]. J Dent Res, 1988, 67(67):1229-1234.
[21] Kim HM, Rey C, Glimcher MJ. X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage[J]. Calcif Tissue Int, 1996, 59(1):58-63.
[22] Raspanti M, Guizzardi S, Pasquale VD, et al. Ultrastructure of heat-deproteinated compact bone[J]. Biomaterials, 1994, 15(6):433-437.
[23] Guizzardi S, Raspanti M, Martini D, et al. Low-temperature heat-deproteinated compact bone to heal large bone defects[J]. Biomaterials, 1995, 16(12):931-936.
[24] Hiller JC, Thompson TJU, Evison MP, et al. Bone mineral change during experimental heating: an X-ray scatteringinvestigation[J]. Biomaterials, 2003, 24(28):5091-5097.
[25] Danilchenko SN, Koropov AV, Protsenko IY, et al. Thermal behavior of biogenic apatite crystals in bone: An X-ray diffraction study[J]. Cryst Res Technol, 2006, 41(3):268-275.
[26] Rhee SH, Park HN, Seol YJ, et al. Effect of heat-treatment temperature on the osteoconductivity of the apatite derived from bovine bone[J]. Key Eng Mater, 2006, 309-311:41-44.
[27] Ooi CY, Hamdi M, Ramesh S. Properties of hydroxyapatite produced by annealing of bovine bone[J]. Ceram Int, 2007, 33(7):1171-1177.
[28] Seo DS, Lee JK. Dissolution of human teeth-derived hydroxyapatite[J]. Ann Biomed Eng, 2008, 36(1):132-140.
[29] Pan HB, Li ZY, Wang T, et al. Nucleation of strontium-substituted apatite[J]. Cryst Growth Des, 2009, 9(8):3342-3345.
[30] Wang XY, Zuo Y, Huang D, et al. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone[J]. Biomed Environ Sci, 2010, 23(6):473-480.
[31] Mondal S, Mondal A, Mandal N, et al. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold[J]. Bioprocess Biosyst Eng, 2014, 37(7):1233-1240.
[32] Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials[J]. J CranioMaxillofac Surg, 2012, 40(8):706-718.
[33] Pan HB, Darvell BW. Effect of carbonate on hydroxyapatite solubility[J]. Cryst Growth Des, 2010, 88(2):845-850.
[34] Chen ZF, Huang BX, Pan HB, et al. Solubility of bovine-derived hydroxyapatite by solid titration, pH 3.5-5[J]. Cryst Growth Des, 2009, 9(6):2816-2820.
[35] Duda M, Pajak J. The issue of bioresorption of the Bio-Oss xenogeneic bone substitute in bone defects[J]. Ann Univ Mariae Curie Sklodowska Med, 2004, 59(1):269-277.
[36] Barone A, Todisco M, Ludovichetti M, et al. A prospective, randomized, controlled, multicenter evaluation of extraction socket preservation comparing two bovine xenografts: clinical and histologic outcomes[J]. Int J Perio Rest Dent, 2013, 33(6):795-802.
[37] Cordaro L, Bosshardt DD, Palattella P, et al. Maxillary sinus grafting with Bio-Oss (R) or Straumann (R) Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial[J]. Clin Oral Implan Res, 2008, 19(8):796-803.
[38] Pan HB, Darvell BW. Solubility of TTCP and β-TCP by solid titration[J]. Arch Oral Biol, 2009, 54(7):671-677.
[39] Liu Q, Matinlinna JP, Chen ZF, et al. Effect of thermal treatment on carbonated hydroxyapatite: morphology, composition, crystal characteristics and solubility[J]. Ceram Int, 2015, 25(5):6149-6157.
[40] Xie C, Lu H, Li W, et al. The use of calcium phosphate-based biomaterials in implant dentistry[J]. J Mater Sci-Mater Med, 2012, 23(3):853-862.
[41] Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair[J]. J Mater Sci Mater Med, 2012, 23(10):2335-2347.
[42] Pan HB, Li ZY, Lam WM, et al. Solubility of strontium-substituted apatite by solid titration[J]. Acta Biomater, 2009, 5(5):1678-1685.
[43] Buehler J, Chappuis P, Saffar JL, et al. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis)[J]. Bone, 2001, 29(2):176-179.
[44] Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms[J]. Bone, 2008, 42(6):1131-1136.
[45] Landi E, Tampieri A, Celotti G, et al. Sr-substituted hydroxyapatites for osteoporotic bone replacement[J]. Acta Biomater, 2007, 3(6):961-969.
[46] Morabito N, Catalano A, Gaudio A, et al. Effects of strontium ranelate on bone mass and bone turnover in women with thalassemia major-related osteoporosis[J]. J Bone Miner Metab, 2015, 24:1-7.
[47] Carrodeguas RG, De Aza S. α-Tricalcium phosphate: synthesis, properties and biomedical applications[J]. Acta Biomater, 2011, 7(10):3536-3546.
[48] Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry[J]. Int J Biomater, 2013, 2013:876132.
[49] Correa D, Almirall A, Carrodeguas RG, et al. α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity[J]. J Biomed Mater Res B Appl Biomater, 2015, 103(1):72-83.
[50] Bang LT, Ramesh S, Purbolaksono J, et al. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone[J]. Biomed Mater, 2015, 10(4):045011.
[51] Hao H, Amizuka N, Oda K, et al. A histological evaluation on self-setting alpha-tricalcium phosphate applied in the rat bone cavity[J]. Biomaterials, 2004, 25(3):431-442.[52] Rojbani H, Nyan M, Ohya K, et al. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect[J]. J Biomed Mater Res A, 2011, 98(4):488-498.
[53] Ghanaati S, Barbeck M, Orth C, et al. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo[J]. Acta Biomater, 2010, 6(12):4476-4487.
[54] Lapczyna H, Galea L, Wust S, et al. Effect of grain size and microporosity on the in vivo behaviour of β-tricalcium phosphate scaffolds[J]. Eur Cell Mater, 2014, 28:299-319.
[55] Schulten EA, Prins HJ, Overman JR, et al. A novel approach revealing the effect of a collagenous membrane on osteoconduction in maxillary sinus floor elevation with β-tricalcium phosphate[J]. Eur Cell Mater, 2013, 25:215-228.
[56] Miyamoto S, Shinmyouzu K, Miyamoto I, et al. Histomorphometric and immunohistochemical analysis of human maxillary sinus-floor augmentation using porous β-tricalcium phosphate for dental implant treatment[J]. Clin Oral Implants Res, 2013, 24 Suppl A100:134-138.
[57] Gorla LF, Spin-Neto R, Boos FB, et al. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective, randomized, volumetric computed tomography study[J]. Int J Oral Maxillofac Surg, 2015, 44(2):1486-1491.
[58] de Ruiter A, Janssen N, van Es R, et al. Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: a pilot study[J]. Cleft Palate Craniofac J , 2015, 52(3):336-340.
[59] Swain SK, Gotman I, Unger R, et al. Microstructure, mechanical characteristics and cell compatibility of beta-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase[J]. J Mech Behav Biomed Mater, 2016, 53:434-444.
[60] Abert J, Amella A, Weigelt S, et al. Degradation and swelling issues of poly-(d,l-lactide)/beta-tricalcium phosphate/calcium carbonate composites for bone replacement[J]. J Mech Behav Biomed Mater, 2016, 54:82-92.
[61] Ahola N, Veiranto M, Rich J, et al. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate[J]. J Biomater Appl, 2013, 28(4):529-543.
[62] Ghanaati S, Barbeck M, Detsch R, et al. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics[J]. Biomed Mater, 2012, 7(1):015005.
[63] Macedo RM, Lacerda SA, Thomazini JA, et al. Bone integration behavior of hydroxyapatite/beta-tricalcium phosphate graft implanted in dental alveoli: a histomorphometric and scanning electron microscopy study[J]. Implant Dent, 2014, 23(6):710-715.
[64] Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates[J]. Acta Biomater, 2012, 8(3):963-977.
[65] Niu CC, Lin SS, Chen WJ, et al. Benefits of biphasic calcium phosphate hybrid scaffold-driven osteogenic differentiation of mesenchymal stem cells through upregulated leptin receptor expression[J]. J Orthopaed Surg Res, 2015, 10:111.
[66] Kim S, Jung UW, Lee YK, et al. Effects of biphasic calcium phosphate bone substitute on circumferential bone defects around dental implants in dogs[J]. Int J Oral Maxillofac Implan, 2011, 26(2):265-273.
[67] Hung CL, Yang JC, Chang WJ, et al. In vivo graft performance of an improved bone substitute composed of poor crystalline hydroxyapatite based biphasic calcium phosphate[J]. Dent Mater J, 2011, 30(1):21-28.
[68] Ohayon L. Maxillary sinus floor augmentation using biphasic calcium phosphate: a histologic and histomorphometric study[J]. Int J Oral Maxillofac Implants, 2014, 29(5):1143-1148.
[69] Friedmann A, Gissel K, Konermann A, et al. Tissue reactions after simultaneous alveolar ridge augmentation with biphasic calcium phosphate and implant insertion-histological and immunohistochemical evaluation in humans[J]. Clin Oral Invest, 2015, 19(7):1595-1603.
[70] Komath M, Varma HK. Fully injectable calcium phosphate cement--a promise to dentistry[J]. Indian J Dent Res,2004, 15(3):89-95.
[71] Zhang J, Liu W, Schnitzler V, et al. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties[J]. Acta Biomater, 2014, 10(3):1035-1049.
[72] Almirall A, Larrecq G, Delgado JA, et al. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste[J]. Biomaterials, 2004, 25(17):3671-3680.
[73] Akkineni AR, Luo Y, Schumacher M, et al. 3D plotting of growth factor loaded calcium phosphate cement scaffolds[J]. Acta Biomater, 2015, 27:264-274.
[74] Chen F, Liu C, Mao Y. Bismuth-doped injectable calciumphosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling[J]. Acta Biomater, 2010, 6(8):3199-3207.
[75] Singh P, Paul J, Al-Khuraif AA, et al. Sealing ability of mineral trioxide aggregate, calcium phosphate cement, and glass ionomer cement in the repair of furcation perforations[J]. Acta Medica, 2013, 56(3):97-103.
[76] Arisan V, Ozdemir T, Anil A, et al. Injectable calcium phosphate cement as a bone-graft material around peri-implant dehiscence defects: a dog study[J]. Int J Oral Maxillofac Implants, 2008, 23(6):1053-1062.
[77] Aral A, Yalcin S, Karabuda ZC, et al. Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: an experimental pilot study[J]. Clin Oral Implants Res, 2008, 19(6):612-617.
[78] Mazor Z, Peleg M, Garg AK, et al. The use of hydroxyapatite bone cement for sinus floor augmentation with simultaneous implant placement in the atrophic maxilla. A report of 10 cases[J]. J Periodontol, 2000, 71(7):1187-1194.
[79] Scarano A, Degidi M, Iezzi G, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man[J]. Implan Dent, 2006, 15(2):197-207.
[80] Boeck-Neto RJ, Gabrielli MF, Shibli JA, et al. Histomorphometric evaluation of human sinus floor augmentation healing responses to placement of calcium phosphate or Ricinus communis polymer associated with autogenous bone [J]. Clin Implan Dent Related Res, 2005, 7(4):181-188.
[81] Sverzut AT, Rodrigues DC, Lauria A, et al. Clinical, radiographic, and histological analyses of calcium phosphate cement as filling material in maxillary sinus lift surgery[J]. Clin Oral Implants Res, 2015, 26(6):633-638.
[82] Bohner M, Baroud G. Injectability of calcium phosphate pastes[J]. Biomaterials, 2005, 26(13):1553-1563.
[83] Khairoun I, Driessens FC, Boltong MG, et al. Addition of cohesion promotors to calcium phosphate cements[J]. Biomaterials, 1999, 20(4):393-398.
[84] Hofmann MP, Mohammed AR, Perrie Y, et al. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities[J]. Acta Biomater, 2009, 5(1):43-49.
[85] Xu HH, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers[J]. J Biomed Mater Res, 2000, 52(1):107-114.
[86] Krüger R, Seitz JM, Ewald A, et al. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement[J]. J Mechan Behav Biomed Mater, 2013, 20:36-44.
[87] Pan Z, Jiang P, Fan Q, et al. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement[J]. J Biomed Mater Res B Appl Biomater, 2007, 82(1):246-252.
[88] Thürmer MB, Diehl CE, Brum FJ, et al. Development of dual-setting calcium phosphate cement using absorbable polymer[J]. Artificial organs, 2013, 37(11):992-997.
[89] Liu W, Zhang J, Weiss P, et al. The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution[J]. Acta Biomater, 2013, 9(3):5740-5750.
[90] LeGeros RZ, LeGeros JP. Calcium phosphate bioceramics: past, present and future[J]. Key Engine Mater, 2003, 240-2:3-10.
[91] Bohner M, Galea L, Doebelin N. Calcium phosphate bone graft substitutes: Failures and hopes[J]. J Europ Ceram Soc, 2012, 32(11):2663-2671. |