[1] |
Ke QD, Costa M. Hypoxia-inducible factor-1(HIF-1)[J]. Mol Pharmacol, 2006, 70(5): 1469-1480.
doi: 10.1124/mol.106.027029
URL
|
[2] |
Gladek I, Ferdin J, Horvat S, et al. HIF1A gene polymorphisms and human diseases: Graphical review of 97 association studies[J]. Genes Chromosomes Cancer, 2017, 56(6): 439-452.
doi: 10.1002/gcc.v56.6
URL
|
[3] |
Semenza GL. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148(3): 399-408.
doi: 10.1016/j.cell.2012.01.021
pmid: 22304911
|
[4] |
Johnson RW, Schipani E, Giaccia AJ. HIF targets in bone remodeling and metastatic disease[J]. Pharmacol Ther, 2015, 150: 169-177.
doi: 10.1016/j.pharmthera.2015.02.002
URL
|
[5] |
Stegen S, Carmeliet G. Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis[J]. Curr Opin Nephrol Hypertens, 2019, 28(4): 328-335.
doi: 10.1097/MNH.0000000000000508
URL
|
[6] |
Knowles HJ, Cleton-Jansen AM, Korsching E, et al. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: Role of angiopoietin-like 4[J]. FASEB J, 2010, 24(12): 4648-4659.
doi: 10.1096/fj.10-162230
pmid: 20667978
|
[7] |
Zhou J, Brüne B. Cytokines and hormones in the regulation of hypoxia inducible factor-1α(HIF-1α)[J]. Cardiovasc Hematol Agents Med Chem, 2006, 4(3): 189-197.
doi: 10.2174/187152506777698344
pmid: 16842205
|
[8] |
Philippa A Hulley, et al. Hypoxia-inducible factor 1-α does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2[J]. J Pathol, 2017, 242(4): 513.
doi: 10.1002/path.2017.242.issue-4
URL
|
[9] |
Yellowley CE, Genetos DC. Hypoxia signaling in the skeleton: Implications for bone health[J]. Curr Osteoporos Rep, 2019, 17(1): 26-35.
doi: 10.1007/s11914-019-00500-6
pmid: 30725321
|
[10] |
Eltzschig HK, Carmeliet P. Hypoxia and inflammation[J]. N Engl J Med, 2011, 364(7): 656-665.
doi: 10.1056/NEJMra0910283
URL
|
[11] |
Weinstein RS, Hogan EA, Borrelli MJ, et al. The pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice[J]. Endocrinology, 2017, 158(11): 3817-3831.
doi: 10.1210/en.2017-00662
pmid: 28938402
|
[12] |
Tang Y, Hong C, Cai Y, et al. HIF-1α mediates osteoclast-induced mandibular condyle growth via AMPK signaling[J]. J Dent Res, 2020, 99(12): 1377-1386.
doi: 10.1177/0022034520935788
URL
|
[13] |
Zhao Q, Shen X, Zhang W, et al. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss[J]. Bone, 2012, 50(3): 763-770.
doi: 10.1016/j.bone.2011.12.003
pmid: 22193550
|
[14] |
Yao Q, Parvez-Khan M, Schipani E. In vivo survival strategies for cellular adaptation to hypoxia: HIF1α-dependent suppression of mitochondrial oxygen consumption and decrease of intracellular hypoxia are critical for survival of hypoxic chondrocytes[J]. Bone, 2020, 140: 115572.
doi: 10.1016/j.bone.2020.115572
URL
|
[15] |
Knowles HJ. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function[J]. Sci Rep, 2020, 10(1): 21072.
doi: 10.1038/s41598-020-78003-z
pmid: 33273561
|
[16] |
Pf D, Swoboda B, Cramer T. Commentary The role of HIF-I alpha in mainraining cartilage homeostasis and during the pathogenesis of osteoarthritis[J]. Arthritis Bes Ther, 2006, 8(1):104.
|
[17] |
Tian YY, Shao Q, Tang Y, et al. HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1[J]. Oral Dis, 2022, 28(2): 428-441.
doi: 10.1111/odi.v28.2
URL
|
[18] |
Kronenberg HM. Developmental regulation of the growth plate[J]. Nature, 2003, 423(6937): 332-336.
doi: 10.1038/nature01657
URL
|
[19] |
Wei X, Hu M, Mishina Y, et al. Developmental regulation of the growth plate and cranial synchondrosis[J]. J Dent Res, 2016, 95(11): 1221-1229.
doi: 10.1177/0022034516651823
pmid: 27250655
|
[20] |
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation[J]. Development, 2015, 142(5): 817-831.
doi: 10.1242/dev.105536
pmid: 25715393
|
[21] |
Stocum DL, Roberts WE. Part Ⅰ: Development and physi-ology of the temporomandibular joint[J]. Curr Osteoporos Rep, 2018, 16(4): 360-368.
doi: 10.1007/s11914-018-0447-7
pmid: 29948821
|