[1] |
Chambrone L. Current status of the influence of osteoporosis on periodontology and implant dentistry[J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(6): 435-439.
pmid: 27490444
|
[2] |
Feng X, McDonald JM. Disorders of bone remodeling[J]. Annu Rev Pathol, 2011, 6: 121-145.
doi: 10.1146/annurev-pathol-011110-130203
pmid: 20936937
|
[3] |
Kim MH, Lee HJ, Park JC, et al. Zanthoxylum piperitum reversed alveolar bone loss of periodontitis via regulation of bone remodeling-related factors[J]. J Ethnopharmacol, 2017, 195: 137-142.
doi: S0378-8741(16)31436-2
pmid: 27777167
|
[4] |
Liu J, Wu Z, He H, et al. Gallium and silicon synergistically promote osseointegration of dental implant in patients with osteoporosis[J]. Med Hypotheses, 2017, 103: 35-38.
doi: S0306-9877(16)30601-6
pmid: 28571805
|
[5] |
Hutchings G, Moncrieff L, Dompe C, et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials[J]. J Clin Med, 2020, 9(1): E139.
|
[6] |
Kim HJ, Kim WJ, Ryoo HM. Post-translational regulations of transcriptional activity of RUNX2[J]. Mol Cells, 2020, 43(2): 160-167.
|
[7] |
Liu J, Dang L, Wu X, et al. MicroRNA-mediated regulation of bone remodeling: a brief review[J]. JBMR Plus, 2019, 3(9): e10213.
doi: 10.1002/jbm4.v3.9
URL
|
[8] |
Stepan JJ, Hruskova H, Kverka M. Update on menopausal hormone therapy for fracture prevention[J]. Curr Osteoporos Rep, 2019, 17(6): 465-473.
doi: 10.1007/s11914-019-00549-3
pmid: 31741221
|
[9] |
Blair HC, Larrouture QC, Li Y, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro[J]. Tissue Eng Part B: Rev, 2017, 23(3): 268-280.
doi: 10.1089/ten.teb.2016.0454
URL
|
[10] |
Kubota T, Hasuike A, Tsukune N, et al. Influence of estrogen deficiency on guided bone augmentation: investigation of rat calvarial model and osteoblast-like MC3T3-E1 cells[J]. Eur J Oral Sci, 2018, 126(3): 206-213.
doi: 10.1111/eos.12415
pmid: 29676477
|
[11] |
Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale[J]. J Clin Invest, 2006, 116(5): 1186-1194.
doi: 10.1172/JCI28550
pmid: 16670759
|
[12] |
Wang P, Qiao P, Xing H, et al. Cytotoxicity, oxidative stress, and autophagy effects of tantalum nanoparticles on MC3T3-E1 mouse osteoblasts[J]. J Nanosci Nanotechnol, 2020, 20(3): 1417-1424.
doi: 10.1166/jnn.2020.17158
pmid: 31492302
|
[13] |
Wu YY, Li W, Xu Y, et al. Evaluation of the antioxidant effects of four main theaflavin derivatives through chemiluminescence and DNA damage analyses[J]. J Zhejiang Univ Sci B, 2011, 12(9): 744-751.
doi: 10.1631/jzus.B1100041
URL
|
[14] |
Han D, Chen W, Gu X, et al. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway[J]. Oncotarget, 2017, 8(9): 14680-14692.
doi: 10.18632/oncotarget.14747
pmid: 28122344
|
[15] |
Leung LK, Su Y, Chen R, et al. Theaflavins in black tea and catechins in green tea are equally effective antioxidants[J]. J Nutr, 2001, 131(9): 2248-2251.
pmid: 11533262
|
[16] |
Wu Y, Jin F, Wang Y, et al. In vitro and in vivo anti-inflammatory effects of theaflavin-3, 3′-digallate on lipopolysaccharide-induced inflammation[J]. Eur J Pharmacol, 2017, 794: 52-60.
doi: 10.1016/j.ejphar.2016.11.027
URL
|
[17] |
Hu X, Ping Z, Gan M, et al. Theaflavin-3, 3′-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway[J]. Acta Biomater, 2017, 48: 479-488.
doi: 10.1016/j.actbio.2016.11.022
URL
|
[18] |
Oka Y, Iwai S, Amano H, et al. Tea polyphenols inhibit rat osteoclast formation and differentiation[J]. J Pharmacol Sci, 2012, 118(1): 55-64.
pmid: 22186621
|
[19] |
Xu H, Yin D, Liu T, et al. Tea polysaccharide inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells and ameliorates ovariectomy-induced osteoporosis in rats[J]. Biomedecine Pharmacother, 2018, 102: 539-548.
|
[20] |
Hyeon S, Lee H, Yang Y, et al. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation[J]. Free Radic Biol Med, 2013, 65: 789-799.
doi: 10.1016/j.freeradbiomed.2013.08.005
URL
|
[21] |
Park CK, Lee Y, Kim KH, et al. Nrf2 is a novel regulator of bone acquisition[J]. Bone, 2014, 63: 36-46.
doi: 10.1016/j.bone.2014.01.025
pmid: 24521946
|
[22] |
Sun YX, Xu AH, Yang Y, et al. Role of Nrf2 in bone metabolism[J]. J Biomed Sci, 2015, 22: 101.
doi: 10.1186/s12929-015-0212-5
URL
|
[23] |
Dai P, Mao Y, Sun X, et al. Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased akt-GSK3β signaling[J]. Cell Physiol Biochem, 2017, 41(2): 661-677.
doi: 10.1159/000457945
pmid: 28291961
|
[24] |
Lu XZ, Yang ZH, Zhang HJ, et al. MiR-214 protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress and targeting ATF4[J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 4762-4770.
|
[25] |
Shi Y, Liu XY, Jiang YP, et al. Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells[J]. Biomedecine Pharmacother, 2020, 121: 109566.
|