[1] |
Man J, Graham T, Squires-Donelly G, et al. The effects of microgravity on bone structure and function[J]. NPJ Microgravity, 2022, 8(1): 9.
doi: 10.1038/s41526-022-00194-8
pmid: 35383182
|
[2] |
Lin WM, Li QW, Zhang DT, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution[J]. Bone Res, 2021, 9(1): 17.
doi: 10.1038/s41413-021-00141-5
pmid: 33723232
|
[3] |
Rusu Olaru A, Popescu MR, Dragomir LP, et al. Clinical study on abfraction lesions in occlusal dysfunction[J]. Curr Health Sci J, 2019, 45(4): 390-397.
doi: 10.12865/CHSJ.45.04.07
pmid: 32110441
|
[4] |
Motokawa M, Kaku M, Matsuda Y, et al. Effects of occlusal hypofunction and its recovery on PDL structure and expression of VEGF and bFGF in rats[J]. Clin Oral Investig, 2015, 19(4): 929-935.
doi: 10.1007/s00784-014-1310-6
URL
|
[5] |
Liu J, Jin ZL, Li Q. Effect of occlusal hypofunction and its recovery on the three-dimensional architecture of mandibular alveolar bone in growing rats[J]. J Surg Res, 2015, 193(1): 229-236.
doi: 10.1016/j.jss.2014.07.015
pmid: 25224274
|
[6] |
Walker CG, Dangaria S, Ito Y, et al. Osteopontin is required for unloading-induced osteoclast recruitment and modulation of RANKL expression during tooth drift-associated bone remodeling, but not for super-eruption[J]. Bone, 2010, 47(6): 1020-1029.
doi: 10.1016/j.bone.2010.08.025
pmid: 20828639
|
[7] |
Abraham SP, Nita A, Krejci P, et al. Cilia kinases in skeletal development and homeostasis[J]. Dev Dyn, 2022, 251(4): 577-608.
doi: 10.1002/dvdy.v251.4
URL
|
[8] |
Chinipardaz Z, Liu M, Graves DT, et al. Role of primary cilia in bone and cartilage[J]. J Dent Res, 2022, 101(3): 253-260.
doi: 10.1177/00220345211046606
URL
|
[9] |
Martín-Guerrero E, Tirado-Cabrera I, Buendía I, et al. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation[J]. J Cell Physiol, 2020, 235(10): 7356-7369.
doi: 10.1002/jcp.29636
pmid: 32039485
|
[10] |
Handa A, Voss U, Hammarsjö A, et al. Skeletal ciliopathies: A pattern recognition approach[J]. Jpn J Radiol, 2020, 38(3): 193-206.
doi: 10.1007/s11604-020-00920-w
pmid: 31965514
|
[11] |
Chan WCW, Tan ZJ, To MKT, et al. Regulation and role of transcription factors in osteogenesis[J]. Int J Mol Sci, 2021, 22(11): 5445.
doi: 10.3390/ijms22115445
URL
|
[12] |
Fisher S, Kuna, Caspary T, et al. ARF family GTPases with links to cilia[J]. Am J Physiol Cell Physiol, 2020, 319(2): C404-C418.
doi: 10.1152/ajpcell.00188.2020
URL
|
[13] |
Tripathi P, Zhu ZH, Qin HY, et al. Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis[J]. J Lipid Res, 2021, 62: 100021.
doi: 10.1194/jlr.RA120001190
URL
|
[14] |
Anvarian Z, Mykytyn K, Mukhopadhyay S, et al. Cellular signalling by primary cilia in development, organ function and disease[J]. Nat Rev Nephrol, 2019, 15(4): 199-219.
doi: 10.1038/s41581-019-0116-9
pmid: 30733609
|
[15] |
Hsu Y, Seo S, Sheffield VC. Photoreceptor cilia, in contrast to primary cilia, grant entry to a partially assembled BBSome[J]. Hum Mol Genet, 2021, 30(1): 87-102.
doi: 10.1093/hmg/ddaa284
pmid: 33517424
|
[16] |
Thomas DC, Moorthy JD, Prabhakar V, et al. Role of primary cilia and Hedgehog signaling in craniofacial features of Ellis-van Creveld syndrome[J]. Am J Med Genet C Semin Med Genet, 2022, 190(1): 36-46.
doi: 10.1002/ajmg.c.v190.1
URL
|
[17] |
Kim JM, Lin CJ, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073.
doi: 10.3390/cells9092073
URL
|
[18] |
Wittkowske C, Reilly GC, Lacroix D, et al. In vitro bone cell models: Impact of fluid shear stress on bone formation [J]. Front Bioeng Biotechnol, 2016, 4: 87.
|
[19] |
Li XH, Guo S, Su Y, et al. Role of primary cilia in skeletal disorders[J]. Stem Cells Int, 2022, 2022: 6063423.
|
[20] |
Ding D, Yang X, Luan HQ, et al. Pharmacological regulation of primary cilium formation affects the mechanosensitivity of osteocytes[J]. Calcif Tissue Int, 2020, 107(6): 625-635.
doi: 10.1007/s00223-020-00756-6
|
[21] |
Moore ER, Zhu YX, Ryu HS, et al. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation[J]. Stem Cell Res Ther, 2018, 9(1): 190.
doi: 10.1186/s13287-018-0930-1
pmid: 29996901
|
[22] |
Fu S, Zhang CL, Yan X, et al. Primary cilia as a biomarker in mesenchymal stem cells senescence: Influencing osteoblastic differentiation potency associated with Hedgehog signaling regulation[J]. Stem Cells Int, 2021, 2021: 8850114.
|