[1] |
Bartold PM. Lifestyle and periodontitis: The emergence of personalized periodontics[J]. Periodontol, 2000, 2018, 78(1): 7-11.
doi: 10.1111/prd.2018.78.issue-1
URL
|
[2] |
Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe tooth loss: A systematic review and meta-analysis[J]. J Dent Res, 2014, 93(7 Suppl):: 20S-28 S.
doi: 10.1177/0022034514537828
pmid: 24947899
|
[3] |
Slots J. Periodontal herpesviruses: Prevalence, pathogenicity, systemic risk[J]. Periodontol 2000, 2015, 69(1): 28-45.
doi: 10.1111/prd.2015.69.issue-1
URL
|
[4] |
Ebersole JL, Dawson D 3rd, Emecen-Huja P, et al. The periodontal war: Microbes and immunity[J]. Periodontol 2000, 2017, 75(1): 52-115.
doi: 10.1111/prd.2017.75.issue-1
URL
|
[5] |
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway[J]. Cytokine, 2008, 42(2): 145-151.
doi: 10.1016/j.cyto.2008.01.006
URL
|
[6] |
Palaska I, Gagari E, Theoharides TC. The effects of P. gingivalis and E. coli LPS on the expression of proinflammatory mediators in human mast cells and their relevance to periodontal disease[J]. J Biol Regul Homeost Agents, 2016, 30(3): 655-664.
|
[7] |
Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799.
doi: 10.1021/acsnano.7b08976
pmid: 30141906
|
[8] |
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs[J]. Nat Immunol, 2017, 18(9): 962-972.
doi: 10.1038/ni.3771
pmid: 28829444
|
[9] |
Lin HY, Jiang MH, Liu L, et al. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response[J]. Nat Immunol, 2019, 20(7): 812-823.
doi: 10.1038/s41590-019-0379-0
pmid: 31036902
|
[10] |
Atianand MK, Hu WQ, Satpathy AT, et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation[J]. Cell, 2016, 165(7): 1672-1685.
doi: S0092-8674(16)30722-X
pmid: 27315481
|
[11] |
Cheng J, Tang X, Zhao J, et al. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy[J]. Acta Biomater, 2016, 30: 155-167.
doi: S1742-7061(15)30224-5
pmid: 26621697
|
[12] |
Intini G, Katsuragi Y, Kirkwood KL, et al. Alveolar bone loss: Mechanisms, potential therapeutic targets, and interventions[J]. Adv Dent Res, 2014, 26(1): 38-46.
doi: 10.1177/0022034514529305
URL
|
[13] |
Yang Y, Wolfram J, Fang XH, et al. Polyarginine induces an antitumor immune response through binding to toll-like receptor 4[J]. Small, 2014, 10(7): 1250-1254.
doi: 10.1002/smll.201302887
pmid: 24323884
|
[14] |
Fang HL, Ang B, Xu XY, et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells[J]. Cell Mol Immunol, 2014, 11(2): 150-159.
doi: 10.1038/cmi.2013.59
pmid: 24362470
|
[15] |
He AQ, Ji R, Shao J, et al. TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation contribute to the anti-inflammatory effect of V8 in LPS-induced human cervical cancer SiHa cells[J]. Inflammation, 2016, 39(1): 172-181.
doi: 10.1007/s10753-015-0236-8
pmid: 26276130
|
[16] |
Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies[J]. Mol Biol Cell, 2014, 25(1): 169-183.
doi: 10.1091/mbc.E13-09-0558
pmid: 24173718
|
[17] |
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1): 47-62.
doi: 10.1038/nrg.2015.10
pmid: 26666209
|
[18] |
Zou YG, Li C, Shu FP, et al. LncRNA expression signatures in periodontitis revealed by microarray: The potential role of lncRNAs in periodontitis pathogenesis[J]. J Cell Biochem, 2015, 116(4): 640-647.
doi: 10.1002/jcb.25015
pmid: 25399840
|
[19] |
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
doi: 10.1038/nrdp.2017.38
pmid: 28805207
|
[20] |
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636.
doi: 10.1016/j.lfs.2019.116636
URL
|
[21] |
Hansmeier NR, Widdershooven PJM, Khani S, et al. Rapid generation of long noncoding RNA knockout mice using CRISPR/Cas9 technology[J]. Noncoding RNA, 2019, 5(1): E12.
|
[22] |
Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Postgrad Med, 2018, 130(1): 98-104.
doi: 10.1080/00325481.2018.1396876
pmid: 29065749
|
[23] |
Hiyari S, Green E, Pan C, et al. Genomewide association study identifies cxcl family members as partial mediators of LPS-induced periodontitis[J]. J Bone Miner Res, 2018, 33(8): 1450-1463.
doi: 10.1002/jbmr.3440
pmid: 29637625
|
[24] |
Aldahlawi S, Youssef AR, Shahabuddin S. Evaluation of chemokine cxcl10 in human gingival crevicular fluid, saliva, and serum as periodontitis biomarker[J]. J Inflamm Res, 2018, 11: 389-396.
doi: 10.2147/JIR.S177188
pmid: 30464571
|
[25] |
Goker F, Larsson L, del Fabbro M, et al. Gene delivery therapeutics in the treatment of periodontitis and peri-implantitis: A state of the art review[J]. Int J Mol Sci, 2019, 20(14): 3551.
doi: 10.3390/ijms20143551
URL
|
[26] |
Luan X, Zhou X, Trombetta-eSilva J, et al. MicroRNAs and periodontal homeostasis[J]. J Dent Res, 2017, 96(5): 491-500.
doi: 10.1177/0022034516685711
pmid: 28068481
|
[27] |
Elangovan S, Jain S, Tsai PC, et al. Nano-sized calcium phosphate particles for periodontal gene therapy[J]. J Periodontol, 2013, 84(1): 117-125.
doi: 10.1902/jop.2012.120012
pmid: 22414259
|