[1] |
Xia YJ, Xia H, Chen L, et al. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres[J]. Exp Ther Med, 2018, 15(4): 3265-3272.
|
[2] |
Quinlan E, Partap S, Azevedo MM, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair[J]. Biomaterials, 2015, 52: 358-366.
doi: 10.1016/j.biomaterials.2015.02.006
pmid: 25818442
|
[3] |
Awale G, Wong E, Rajpura K, et al. Engineered bone tissue with naturally-derived small molecules[J]. Curr Pharm Des, 2017, 23(24): 3585-3594.
|
[4] |
赵娴, 曾锦, 左东川, 等. 钙离子对人牙囊细胞增殖、迁移和成骨分化的影响[J]. 上海口腔医学, 2019, 28(6): 572-577.
|
[5] |
岳帅, 宋镇渤, 孙文娟, 等. 锶抗骨质疏松的作用机制研究[J]. 中国药房, 2019, 30(5): 717-720.
|
[6] |
Kruppke B, Heinemann C, Wagner AS, et al. Strontium ions promote in vitro human bone marrow stromal cell proliferation and differentiation in calcium-lacking media[J]. Dev Growth Differ, 2019, 61(2): 166-175.
doi: 10.1111/dgd.2019.61.issue-2
URL
|
[7] |
Ge M, Ge K, Gao F, et al. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair[J]. Int J Nanomedicine, 2018, 13: 1707-1721.
doi: 10.2147/IJN
URL
|
[8] |
明堃, 李德超, 李慕勤, 等. 纯镁复合硅烷/植酸载锌膜层的细胞相容性实验研究[J]. 口腔颌面外科杂志, 2018, 28(1): 14-20.
doi: 10.3969/j.issn.1005-4979.2018.01.003
|
[9] |
Hung CC, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway[J]. Acta Biomater, 2019, 98: 246-255.
doi: 10.1016/j.actbio.2019.06.001
URL
|
[10] |
He LY, Zhang XM, Liu B, et al. Effect of magnesium ion on human osteoblast activity[J]. Braz J Med Biol Res, 2016, 49(7): e5257.
doi: 10.1590/1414-431x20165257
URL
|
[11] |
Vladescu A, Mihai Cotrut C, Ak Azem F, et al. Sputtered Si and Mg doped hydroxyapatite for biomedical applications[J]. Biomed Mater, 2018, 13(2): 025011.
doi: 10.1088/1748-605X/aa9718
URL
|
[12] |
Li L, Peng X, Qin Y, et al. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis[J]. Sci Rep, 2017, 7: 45204.
doi: 10.1038/srep45204
pmid: 28338064
|
[13] |
Liu L, Liu Y, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis[J]. Biomaterials, 2019, 192: 523-536.
doi: S0142-9612(18)30784-1
pmid: 30529871
|
[14] |
Wang Y, Yang X, Gu Z, et al. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold[J]. Mater Sci Eng C Mater Biol Appl, 2016, 66: 185-192.
doi: 10.1016/j.msec.2016.04.065
URL
|
[15] |
Luo Y, Li DH, Zhao JH, et al. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect[J]. Biomed Mater Eng, 2018, 29(6): 699-721.
|
[16] |
Dashnyam K, Jin GZ, Kim JH, et al. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF[J]. Biomaterials, 2017, 116: 145-157.
|
[17] |
Götz W, Tobiasch E, Witzleben S, et al. Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation[J]. Pharmaceutics, 2019, 11(3): 117.
|
[18] |
Lu X, Li K, Xie YT, et al. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings[J]. J Mater Sci: Mater Med, 2016, 27(11): 1-12.
|
[19] |
Baino F, Potestio I, Vitale-Brovarone C. Production and physicochemical characterization of Cu-doped silicate bioceramic scaffolds[J]. Materials, 2018, 11(9): 1524.
|
[20] |
Shi F, Liu YM, Zhi W, et al. The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity[J]. Biomed Mater, 2017, 12(3): 035006.
|
[21] |
Norambuena GA, Patel R, Karau M, et al. Antibacterial and biocompatible titanium-copper oxide coating may be a potential strategy to reduce periprosthetic infection: An in vitro study[J]. Clin Orthop Relat Res, 2017, 475(3): 722-732.
|
[22] |
de Lima IR, Alves GG, Soriano CA, et al. Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility[J]. J Biomed Mater Res Part A, 2011, 98A(3): 351-358.
|
[23] |
Su YC, Wang K, Gao JL, et al. Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials[J]. Acta Biomater, 2019, 98: 174-185.
|
[24] |
Yang HT, Qu XH, Lin WJ, et al. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications[J]. Acta biomaterialia, 2018, 71: 200-214.
|
[25] |
Yu JM, Xu LZ, Li K, et al. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/smad pathway and osseointegration in osteopenic rabbits[J]. Sci Rep, 2017, 7(1): 3440.
|
[26] |
Kulanthaivel S, Roy B, Agarwal T, et al. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 648-658.
|
[27] |
Ignjatovic N, Ajdukovi Z, Rajkovic J, et al. Enhanced Osteogenesis of Nanosized Cobalt-substituted Hydroxyapatite[J]. J BIONIC ENG, 2015, 12(4): 604-612.
|
[28] |
Liao F, Peng XY, Yang F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability[J]. Mater Sci Eng C Mater Biol App, 2019, 104 109999.
|
[29] |
He F, Lu T, Fang X, et al. Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption[J]. J Biomed Mater Res A, 2019, 107(6): 1314-1323.
|