[1] |
Das R, Bhattacharjee C. Titanium-based nanocomposite materials for dental implant systems[M]//Applications of Nanocomposite Materials in Dentistry. Amsterdam: Elsevier, 2019: 271-284.
|
[2] |
Noort R. Titanium: The implant material of today[J]. J Mater Sci, 1987, 22(11): 3801-3811.
doi: 10.1007/BF01133326
URL
|
[3] |
Hench LL. The story of Bioglass[J]. J Mater Sci Mater Med, 2006, 17(11): 967-978.
doi: 10.1007/s10856-006-0432-z
URL
|
[4] |
Barrere F, Van Der Valk CM, Dalmeijer RAJ, et al. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants[J]. J Biomed Mater Res A, 2003, 64(2): 378-387.
pmid: 12522826
|
[5] |
Pan YK, Chen CZ, Wang DG, et al. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings[J]. Mater Chem Phys, 2013, 141(2-3): 842-849.
doi: 10.1016/j.matchemphys.2013.06.013
URL
|
[6] |
杨帮成, 周学东, 于海洋, 等. 钛种植体表面改性方法[J]. 华西口腔医学杂志, 2019, 37(2): 124-129.
|
[7] |
Chen JC, Ko CL, Lin DJ, et al. In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration[J]. J Aust Ceram Soc, 2019, 55(3): 799-806.
doi: 10.1007/s41779-018-00292-5
|
[8] |
曲露露, 李美华, 罗云纲. 纯钛种植体表面处理技术促进骨整合研究进展[J]. 中国老年学杂志, 2015, 35(12): 3474-3476.
|
[9] |
王全明. 硅-二氧化钛人工关节假体微孔涂层材料促成骨能力及其机理的体外实验研究[D]. 苏州: 苏州大学, 2012.
|
[10] |
Ruiz-Aguilar C, Aguilar-Reyes EA, Olivares-Pinto U. WITHDRAWN: Microstructure and in vitro evaluation of β-TCP/ZrO2-phosphate-based bioactive glass scaffolds for bone tissue engineering[J]. Boletín De La Sociedad Espaáola De Cerámica Y Vidrio, 2019, 165: 1-11.
|
[11] |
Heimann RB. Plasma-sprayed hydroxylapatite-based coatings: Chemical, mechanical, microstructural, and biomedical properties[J]. J Therm Spray Technol, 2016, 25(5): 827-850.
doi: 10.1007/s11666-016-0421-9
URL
|
[12] |
Robertson SF, Bandyopadhyay A, Bose S. Titania nanotube interface to increase adhesion strength of hydroxyapatite Sol-gel coatings on Ti-6Al-4V for orthopedic applications[J]. Surf Coat Technol, 2019, 372: 140-147.
doi: 10.1016/j.surfcoat.2019.04.071
URL
|
[13] |
Asri RI, Harun WS, Hassan MA, et al. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals[J]. J Mech Behav Biomed Mater, 2016, 57: 95-108.
doi: 10.1016/j.jmbbm.2015.11.031
pmid: 26707027
|
[14] |
Ke DX, Vu AA, Bandyopadhyay A, et al. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants[J]. Acta Biomater, 2019, 84: 414-423.
doi: S1742-7061(18)30704-9
pmid: 30500448
|
[15] |
Ročňáková I, Slámečka K, Montufar EB, et al. Deposition of hydroxyapatite and tricalcium phosphate coatings by suspension plasma spraying: Effects of torch speed[J]. J Eur Ceram Soc, 2018, 38(16): 5489-5496.
doi: 10.1016/j.jeurceramsoc.2018.08.007
URL
|
[16] |
Guillem-Marti J, Cinca N, Punset M, et al. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications[J]. Colloids Surf B Biointerfaces, 2019, 180: 245-253.
doi: 10.1016/j.colsurfb.2019.04.048
URL
|
[17] |
Yang GL, Zhang J, Dong WJ, et al. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces[J]. Sci Rep, 2016, 6: 23423.
doi: 10.1038/srep23423
pmid: 26996815
|
[18] |
Alam MI, Asahina I, Ohmamiuda K, et al. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2[J]. Biomaterials, 2001, 22(12): 1643-1651.
pmid: 11374466
|
[19] |
Siebers MC, Walboomers XF, Leewenburgh SCG, et al. Transforming growth factor-beta1 release from a porous electrostatic spray deposition-derived calcium phosphate coating[J]. Tissue Eng, 2006, 12(9): 2449-2456.
pmid: 16995778
|
[20] |
Park JW, Han SH, Hanawa T. Effects of surface nanotopography and calcium chemistry of titanium bone implants on early blood platelet and macrophage cell function[J]. Biomed Res Int, 2018, 2018: 1362958.
|
[21] |
Liu Y, Hunziker EB, Randall NX, et al. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate[J]. Biomaterials, 2003, 24(1): 65-70.
doi: 10.1016/s0142-9612(02)00252-1
pmid: 12417179
|
[22] |
Bae JC, Lee JJ, Shim JH, et al. Development and assessment of a 3D-printed scaffold with rhBMP-2 for an implant surgical guide stent and bone graft material: A pilot animal study[J]. Materials (Basel), 2017, 10(12): E1434.
|
[23] |
Shi Q, Qian Z, Liu D, et al. Surface modification of dental titanium implant by layer-by-layer electrostatic self-assembly[J]. Front Physiol, 2017, 8: 574.
doi: 10.3389/fphys.2017.00574
pmid: 28824462
|
[24] |
Stock SR. The mineral-collagen interface in bone[J]. Calcif Tissue Int, 2015, 97(3): 262-280.
doi: 10.1007/s00223-015-9984-6
URL
|
[25] |
Cai YR, Tang RK. Towards understanding biomineralization: Calcium phosphate in a biomimetic mineralization process[J]. Front Mater Sci China, 2009, 3(2): 124-131.
doi: 10.1007/s11706-009-0026-z
URL
|
[26] |
Cai YR, Tang RK. Calcium phosphate nanoparticles in biomineralization and biomaterials[J]. J Mater Chem, 2008, 18(32): 3775.
doi: 10.1039/b805407j
URL
|
[27] |
Izawa H, Nishino S, Maeda H, et al. Mineralization of hydroxyapatite upon a unique xanthan gum hydrogel by an alternate soaking process[J]. Carbohydr Polym, 2014, 102: 846-851.
doi: 10.1016/j.carbpol.2013.10.080
URL
|
[28] |
Ciobanu G, Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants[J]. Ceram Int, 2019, 45(2): 2852-2857.
doi: 10.1016/j.ceramint.2018.07.290
URL
|
[29] |
Izquierdo-Barba I, Santos-Ruiz L, Becerra J, et al. Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment[J]. Acta Biomater, 2019, 83: 456-466.
doi: S1742-7061(18)30671-8
pmid: 30445158
|