[1] |
Fang RH, Kroll AV, Gao W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): e1706759.
|
[2] |
Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121.
doi: 10.1038/nature15373
|
[3] |
Nie D, Dai Z, Li JL, et al. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy[J]. Nano Lett, 2020, 20(2): 936-946.
doi: 10.1021/acs.nanolett.9b03817
pmid: 31671946
|
[4] |
Zhang QZ, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol, 2018, 13(12): 1182-1190.
doi: 10.1038/s41565-018-0254-4
pmid: 30177807
|
[5] |
Zhuang Z, Yoshizawa-Smith S, Glowacki A, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models[J]. J Dent Res, 2019, 98(2): 200-208.
doi: 10.1177/0022034518805984
pmid: 30392438
|
[6] |
Yu T, Zhao L, Huang X, et al. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection[J]. J Periodontol, 2016, 87(9): 1092-1102.
doi: 10.1902/jop.2016.160081
pmid: 27177291
|
[7] |
Sima C, Glogauer M. Macrophage subsets and osteoimmunology: Tuning of the immunological recognition and effector systems that maintain alveolar bone[J]. Periodontol 2000, 2013, 63(1): 80-101.
doi: 10.1111/prd.12032
pmid: 23931056
|
[8] |
李伟锋, 蒋建兰. 姜黄素药理作用的研究现状[J]. 中国临床药理学杂志, 2017, 33(10): 957-960.
|
[9] |
Salehi B, Stojanović-Radić Z, Matejić J, et al. The therapeutic potential of curcumin: A review of clinical trials[J]. Eur J Med Chem, 2019, 163: 527-545.
doi: S0223-5234(18)31053-5
pmid: 30553144
|
[10] |
陈方圆, 袁祖贻, 周娟, 等. 姜黄素促进RAW264.7源性M1巨噬细胞向替代激活M2表型极化[J]. 西安交通大学学报(医学版), 2015, 36(2): 257-262.
|
[11] |
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 63.
doi: 10.1186/s13287-018-0791-7
pmid: 29523213
|
[12] |
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1): e0190358.
doi: 10.1371/journal.pone.0190358
URL
|
[13] |
Yang N, Ding YP, Zhang YL, et al. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy[J]. ACS Appl Mater Interfaces, 2018, 10(27): 22963-22973.
doi: 10.1021/acsami.8b05363
URL
|
[14] |
Kalia P, Jain A, Radha Krishnan R, et al. Peptide-modified nanoparticles inhibit formation of Porphyromonas gingivalis biofilms with Streptococcus gordonii[J]. Int J Nanomedicine, 2017, 12: 4553-4562.
doi: 10.2147/IJN
URL
|
[15] |
Mitragotri S, Lahann J. Physical approaches to biomaterial design[J]. Nat Mater, 2009, 8(1): 15-23.
doi: 10.1038/nmat2344
pmid: 19096389
|
[16] |
Zou SJ, Wang BL, Wang C, et al. Cell membrane-coated nanoparticles: Research advances[J]. Nanomedicine (Lond), 2020, 15(6): 625-641.
doi: 10.2217/nnm-2019-0388
URL
|
[17] |
Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges[J]. Stem Cell Res Ther, 2017, 8(1): 273.
doi: 10.1186/s13287-017-0727-7
pmid: 29202871
|
[18] |
Wang M, Xin YF, Cao H, et al. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery[J]. Biomater Sci, 2021, 9(4): 1088-1103.
doi: 10.1039/D0BM01164A
URL
|
[19] |
Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment[J]. Biomaterials, 2019, 206: 115-132.
doi: S0142-9612(19)30189-9
pmid: 30933774
|