[1] |
Mendenhall WM, Mendenhall CM, Mendenhall NP. Submandibular gland-sparing intensity-modulated radiotherapy[J]. Am J Clin Oncol, 2014, 37(5): 514-516.
doi: 10.1097/COC.0b013e318261054e
URL
|
[2] |
Fox PC. Salivary enhancement therapies[J]. Caries Res, 2004, 38(3): 241-246.
doi: 10.1159/000077761
pmid: 15153695
|
[3] |
Brizel DM, Wasserman TH, Henke M, et al. Phase Ⅲ randomized trial of amifostine as a radioprotector in head and neck cancer[J]. J Clin Oncol, 2000, 18(19): 3339-3345.
doi: 10.1200/JCO.2000.18.19.3339
pmid: 11013273
|
[4] |
King M, Joseph S, Albert A, et al. Use of amifostine for cytoprotection during radiation therapy: A review[J]. Oncology, 2020, 98(2): 61-80.
doi: 10.1159/000502979
pmid: 31846959
|
[5] |
Feng XY, Wu ZF, Xu JJ, et al. Dietary nitrate supplementation prevents radiotherapy-induced xerostomia[J]. eLife, 2021, 10: e70710.
doi: 10.7554/eLife.70710
URL
|
[6] |
Dirix P, Nuyts S, van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: A literature review[J]. Cancer, 2006, 107(11): 2525-2534.
doi: 10.1002/cncr.22302
pmid: 17078052
|
[7] |
Jensen SB, Pedersen AML, Vissink A, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: Prevalence, severity and impact on quality of life[J]. Support Care Cancer, 2010, 18(8): 1039-1060.
doi: 10.1007/s00520-010-0827-8
pmid: 20237805
|
[8] |
Grundmann O, Mitchell GC, Limesand KH. Sensitivity of salivary glands to radiation: From animal models to therapies[J]. J Dent Res, 2009, 88(10): 894-903.
doi: 10.1177/0022034509343143
pmid: 19783796
|
[9] |
Gilman KE, Camden JM, Klein RR, et al. P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 316(5): R687-R696.
doi: 10.1152/ajpregu.00192.2018
URL
|
[10] |
Radfar L, Sirois DA. Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation: An animal model for human radiation-induced salivary gland injury[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003, 96(3): 267-274.
doi: 10.1016/S1079-2104(03)00369-X
URL
|
[11] |
Konings AWT, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity[J]. Int J Radiat Oncol Biol Phys, 2005, 62(4): 1187-1194.
doi: 10.1016/j.ijrobp.2004.12.051
URL
|
[12] |
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective[J]. Biosci Rep, 2015, 35(2): e00191.
doi: 10.1042/BSR20150025
URL
|
[13] |
Zhang NN, Huang GL, Han QB, et al. Functional regeneration of irradiated salivary glands with human amniotic epithelial cells transplantation[J]. Int J Clin Exp Pathol, 2013, 6(10): 2039-2047.
|
[14] |
Lim JY, Ra JC, Shin IS, et al. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage[J]. PLoS One, 2013, 8(8): e71167.
doi: 10.1371/journal.pone.0071167
URL
|
[15] |
Pringle S, Maimets M, van der Zwaag M, et al. Human salivary gland stem cells functionally restore radiation damaged salivary glands[J]. Stem Cells, 2016, 34(3): 640-652.
doi: 10.1002/stem.2278
pmid: 26887347
|
[16] |
Lombaert I, Movahednia MM, Adine C, et al. Concise review: Salivary gland regeneration: Therapeutic approaches from stem cells to tssue organoids[J]. Stem Cells, 2017, 35(1): 97-105.
doi: 10.1002/stem.2455
URL
|
[17] |
Maimets M, Bron R, de Haan G, et al. Similar ex vivo expansion and post-irradiation regenerative potential of juvenile and aged salivary gland stem cells[J]. Radiother Oncol, 2015, 116(3): 443-448.
doi: 10.1016/j.radonc.2015.06.022
pmid: 26138058
|
[18] |
Raj K, Mohsin K. More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair[J]. Circ Res, 2016, 118(2): 330-43.
doi: 10.1161/CIRCRESAHA.115.307654
pmid: 26838317
|
[19] |
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297.
doi: 10.3389/fimmu.2012.00297
pmid: 23056000
|
[20] |
Su X, Liu Y, Bakkar M, et al. Labial stem cell extract mitigates injury to irradiated salivary glands[J]. J Dent Res, 2020, 99(3): 293-301.
doi: 10.1177/0022034519898138
pmid: 31937182
|
[21] |
Cotroneo E, Proctor GB, Carpenter GH. Regeneration of acinar cells following ligation of rat submandibular gland retraces the embryonic-perinatal pathway of cytodifferentiation[J]. Differentiation, 2010, 79(2): 120-130.
doi: 10.1016/j.diff.2009.11.005
pmid: 20056310
|
[22] |
Tatsuishi Y, Hirota M, Kishi T, et al. Human salivary gland stem/progenitor cells remain dormant even after irradiation[J]. Int J Mol Med, 2009, 24(3): 361-366.
pmid: 19639228
|
[23] |
Mimeault M, Batra SK. Recent progress on tissue-resident adult stem cell biology and their therapeutic implications[J]. Stem Cell Rev, 2008, 4(1): 27-49.
doi: 10.1007/s12015-008-9008-2
URL
|
[24] |
Nguyen VT, Dawson P, Zhang QH, et al. Administration of growth factors promotes salisphere formation from irradiated parotid salivary glands[J]. PLoS One, 2018, 13(3): e0193942.
doi: 10.1371/journal.pone.0193942
URL
|
[25] |
Toma C, Wagner WR, Bowry S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: In vivo observations of cell kinetics[J]. Circ Res, 2009, 104(3): 398-402.
doi: 10.1161/CIRCRESAHA.108.187724
pmid: 19096027
|
[26] |
Huang GL, Zhang NN, Wang JS, et al. Transdifferentiation of human amniotic epithelial cells into acinar cells using a double-chamber system[J]. Cell Reprogram, 2012, 14(4): 377-383.
doi: 10.1089/cell.2011.0096
URL
|
[27] |
Fontaine MJ, Shih H, Schäfer R, et al. Unraveling the mesenchymal stromal cells′ paracrine immunomodulatory effects[J]. Transfus Med Rev, 2016, 30(1): 37-43.
doi: 10.1016/j.tmrv.2015.11.004
pmid: 26689863
|
[28] |
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J]. J Am Soc Nephrol, 2009, 20(5): 1053-1067.
doi: 10.1681/ASN.2008070798
pmid: 19389847
|
[29] |
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4(3): 214-222.
doi: 10.1016/j.scr.2009.12.003
pmid: 20138817
|
[30] |
Tran SD, Liu YN, Xia DS, et al. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation[J]. PLoS One, 2013, 8(4): e61632.
doi: 10.1371/journal.pone.0061632
URL
|
[31] |
An HY, Shin HS, Choi JS, et al. Adipose mesenchymal stem cell secretome modulated in hypoxia for remodeling of radiation-induced salivary gland damage[J]. PLoS One, 2015, 10(11): e0141862.
doi: 10.1371/journal.pone.0141862
URL
|
[32] |
Cotrim AP, Sowers A, Mitchell JB, et al. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands[J]. Mol Ther, 2007, 15(12): 2101-2106.
pmid: 17726456
|
[33] |
Guo L, Gao R, Xu J, et al. AdLTR2EF1α-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine[J]. Gene Ther, 2014, 21(10): 866-873.
doi: 10.1038/gt.2014.63
pmid: 25030610
|
[34] |
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-6688.
doi: 10.1021/acsnano.9b01004
pmid: 31117376
|
[35] |
Pu XY, Ma SY, Gao Y, et al. Mesenchymal stem cell-derived exosomes: biological function and their therapeutic potential in radiation damage[J]. Cells, 2020, 10(1): E42.
|
[36] |
Ortiz LA, Maria D, Cheryl F, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury[J]. Proc Natl Acad Sci U S A, 2007, 104(26): 11002-7.
doi: 10.1073/pnas.0704421104
URL
|
[37] |
Rodgers K, Jadhav SS. The application of mesenchymal stem cells to treat thermal and radiation burns[J]. Adv Drug Deliv Rev, 2018, 123: 75-81.
doi: 10.1016/j.addr.2017.10.003
URL
|
[38] |
Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38(1): 15-21.
doi: 10.1002/stem.3061
pmid: 31381842
|
[39] |
Hazawa M, Tomiyama K, Saotome-Nakamura A, et al. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation[J]. Biochem Biophys Res Commun, 2014, 446(4): 1165-1171.
doi: 10.1016/j.bbrc.2014.03.067
URL
|
[40] |
Pinzur L, Akyuez L, Levdansky L, et al. Rescue from lethal acute radiation syndrome (ARS) with severe weight loss by secretome of intramuscularly injected human placental stromal cells[J]. J Cachexia Sarcopenia Muscle, 2018, 9(6): 1079-1092.
doi: 10.1002/jcsm.12342
pmid: 30334381
|
[41] |
Grosso S, Doyen J, Parks SK, et al. miR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines[J]. Cell Death Dis, 2013, 4(3): e544.
doi: 10.1038/cddis.2013.71
|
[42] |
Jeyaram A, Lamichhane TN, Wang S, et al. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles[J]. Mol Ther, 2020, 28(3): 975-985.
doi: S1525-0016(19)30564-7
pmid: 31911034
|