[1] |
Coussens LM, Werb Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867.
doi: 10.1038/nature01322
|
[2] |
Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents[J]. Lancet Infect Dis, 2020, 20(11): e276-e288.
doi: 10.1016/S1473-3099(20)30651-4
pmid: 32818434
|
[3] |
Leslie M. Inflammation′s stop signals[J]. Science, 2015, 347(6217): 18-21.
doi: 10.1126/science.347.6217.18
pmid: 25554771
|
[4] |
Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell, 2010, 140(6): 918-934.
doi: 10.1016/j.cell.2010.02.016
pmid: 20303880
|
[5] |
Dou G, Tian R, Liu XM, et al. Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation[J]. Sci Adv, 2020, 6(30): eaba2987.
doi: 10.1126/sciadv.aba2987
URL
|
[6] |
Zhang SF, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease[J]. Nano Today, 2017, 16: 82-96.
doi: 10.1016/j.nantod.2017.08.006
pmid: 31186671
|
[7] |
Wang ZL, Liu LL, Bu WH, et al. Wound healing: Carbon dots induce epithelial-mesenchymal transition for promoting cutaneous wound healing via activation of TGF-β/p38/snail pathway(adv. funct. mater. 43/2020)[J]. Adv Funct Mater, 2020, 30(43): 2070283.
doi: 10.1002/adfm.v30.43
URL
|
[8] |
Yao BW, Huang H, Liu Y, et al. Carbon dots: A small conundrum[J]. Trends Chem, 2019, 1(2): 235-246.
doi: 10.1016/j.trechm.2019.02.003
URL
|
[9] |
Liu JJ, Geng YJ, Li DW, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum[J]. Adv Mater, 2021, 33(38): e2007162.
|
[10] |
Zhu C, Fu YJ, Liu CG, et al. Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers[J]. Adv Mater, 2017, 29(32).
|
[11] |
Tian XT, Yin XB. Carbon dots, unconventional preparation strategies, and applications beyond photoluminescence[J]. Small, 2019, 15(48): 1901803.
doi: 10.1002/smll.v15.48
URL
|
[12] |
Wang L, Wang YL, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nat Commun, 2014, 5: 5357.
doi: 10.1038/ncomms6357
pmid: 25348348
|
[13] |
Liu HJ, Lv XT, Qian JC, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy[J]. ACS Nano, 2020, 14(10): 13304-13315.
doi: 10.1021/acsnano.0c05143
pmid: 33016066
|
[14] |
Zhou D, Jing PT, Wang Y, et al. Carbon dots produced via space-confined vacuum heating: Maintaining efficient luminescence in both dispersed and aggregated states[J]. Nanoscale Horiz, 2019, 4(2): 388-395.
doi: 10.1039/c8nh00247a
pmid: 32254091
|
[15] |
Zhu ZJ, Cheng R, Ling LT, et al. Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method[J]. Angew Chem Int Ed Engl, 2020, 59(8): 3099-3105.
doi: 10.1002/anie.v59.8
URL
|
[16] |
Tao SY, Lu SY, Geng YJ, et al. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials[J]. Angew Chem Int Ed Engl, 2018, 57(9): 2393-2398.
doi: 10.1002/anie.v57.9
URL
|
[17] |
Wei J, Pan XD, Pei Z, et al. The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury[J]. J Trauma Acute Care Surg, 2012, 73(3): 654-660.
pmid: 22710775
|
[18] |
Xu XW, Zhang K, Zhao L, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Appl Mater Interfaces, 2016, 8(48): 32706-32716.
doi: 10.1021/acsami.6b12252
URL
|
[19] |
Melzer N, Meuth SG, Torres-Salazar D, et al. A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis[J]. PLoS One, 2008, 3(9): e3149.
doi: 10.1371/journal.pone.0003149
URL
|
[20] |
Arif T. Salicylic acid as a peeling agent: A comprehensive review[J]. Clin Cosmet Investig Dermatol, 2015, 8: 455-461.
|