[1] Kuroda S, Tanimoto K, Izawa T, et al. Biomechanical and biochemical characteristics of the mandibular condylar cartilage[J]. Osteoarthritis Cartilage, 2009, 17(11):1408-1415.
[2] Rabie AB, Al-Kalaly A. Does the degree of advancement during functional appliance therapy matter[J]? Eur J Orthod, 2008, 30(3):274-282.
[3] Wu M, Lin X, Gu Z, et al. Mandibular lateral shift induces the increased expression of TGF-β, VEGF, and Col-II in the condyle of rat temporomandibular joints[J].Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 114(5 Suppl):S167-S173.
[4] 吴拓江,许跃,李煌,等. 不对称牵引对成年SD大鼠髁突软骨中胶原类型影响的研究[J]. 口腔医学, 2010, 30(6): 321-323.
[5] Chen J, Sorensen KP, Gupta T, et al. Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice[J]. Osteoarthritis Cartilage, 2009, 17(3):354-361.
[6] 江莉婷,谢银银,魏立,等. 大鼠髁突软骨细胞发育中差异蛋白的表达变化[J]. 中国口腔颌面外科杂志, 2013, 11(1): 15-23.
[7] Delatte M, Von den Hoff JW, van Rheden RE, et al. Primary and secondary cartilages of the neonatal rat: the femoral head and the mandibular condyle[J]. Eur J Oral Sci, 2004, 112(2):156-162.
[8] Nakano H, Maki K, Shibasaki Y, et al. Three-dimensional changes in the condyle during development of an asymmetrical mandible in a rat: a microcomputed tomography study[J]. Am J Orthod Dentofacial Orthop, 2004,126(4):410-420.
[9] Sato C, Muramoto T, Soma K. Functional lateral deviation of the mandible and its positional recovery on the rat condylar cartilage during the growth period[J]. Angle Orthod, 2006, 76(4):591-597.
[10] Ishii T, Yamaguchi H. Influence of extraoral lateral force loading on the mandible in the mandibular development of growing rats[J]. Am J Orthod Dentofacial Orthop, 2008, 134(6):782-791.
[11] Fuentes MA, Opperman LA, Buschang P, et al. Lateral functional shift of the mandible: Part I. Effects on condylar cartilage thickness and proliferation[J]. Am J Orthod Dentofacial Orthop, 2003, 123(2):153-159.
[12] Kuroda S, Tanimoto K, Izawa T, et al. Biomechanical and biochemical characteristics of the mandibular condylar cartilage[J]. Osteoarthritis Cartilage, 2009, 17(11):1408-1415.
[13] Ohashi N, Ejiri S, Hanada K,et al. Changes in type I, II, and X collagen immunoreactivity of the mandibular condylar cartilage in a naturally aging rat model[J]. J Bone Miner Metab, 1997, 15(2):77-83.
[14] Hossain KS, Amizuka N, Ikeda N,et al. Histochemical evidences on the chronological alterations of the hypertrophic zone of mandibular condylar cartilage[J]. Microsc Res Tech, 2005, 67(6):325-335.
[15] Li QF, Rabie AB. A new approach to control condylar growth by regulating angiogenesis[J]. Arch Oral Biol, 2007, 52(11):1009-1017.
[16] Chu FT, Tang GH, Hu Z, et al. Mandibular functional positioning only in vertical dimension contributes to condylar adaptation evidenced by concomitant expressions of L-Sox5 and type II collagen[J]. Arch Oral Biol, 2008, 53(6):567-574.
[17] Wattanachai T, Yonemitsu I, Kaneko S, et al. Functional lateral shift of the mandible effects on the expression of ECM in rat temporomandibular cartilage[J]. Angle Orthod, 2009, 79(4):652-659.
[18] Kure-Hattori I, Watari I, Takei M, et al. Effect of functional shift of the mandible on lubrication of the temporomandibular joint[J]. Arch Oral Biol, 2012, 57(7):987-994.
[19] Zhang X, Dai J, Lu L, et al. Experimentally created unilateral anterior crossbite induces a degenerative ossification phenotype in mandibular condyle of growing Sprague-Dawley rats[J]. J Oral Rehabil, 2013, 40(7):500-508.
[20] Magara J, Nozawa-Inoue K, Suzuki A, et al. Alterations in intermediate filaments expression in disc cells from the rat temporomandibular joint following exposure to continuous compressive force[J]. J Anat, 2012, 220(6):612-621.
[21] Shen G, Rabie AB, Zhao ZH, et al. Forward deviation of the mandibular condyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen[J]. Arch Oral Biol, 2006, 51(4):315-324. |