[1] |
Xin LJ, Wen Y, Song JL, et al. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells[J]. Front Endocrinol, 2023, 14: 1151691.
|
[2] |
Sasaki K, Yoshida H. Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome[J]. J Biochem, 2015, 157(4): 185-195.
doi: 10.1093/jb/mvv010
pmid: 25657091
|
[3] |
Tachikawa M, Mochizuki A. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics[J]. Proc Natl Acad Sci USA, 2017, 114(20): 5177-5182.
doi: 10.1073/pnas.1619264114
pmid: 28461510
|
[4] |
Gao JY, Gao AB, Liu W, et al. Golgi stress response: A regulatory mechanism of Golgi function[J]. Biofactors, 2021, 47(6): 964-974.
doi: 10.1002/biof.1780
pmid: 34500494
|
[5] |
Sasaki K, Yoshida H. Golgi stress response and organelle zones[J]. FEBS Lett, 2019, 593(17): 2330-2340.
doi: 10.1002/1873-3468.13554
pmid: 31344260
|
[6] |
Taguchi Y, Ito K, Kano F. PKM2 controls the translation of TFE3 to maintain the integrity of the Golgi apparatus for the survival of HeLa and ME-180 cervical cancer cells[J]. FEBS J, 2023, 290(12): 3221-3242.
|
[7] |
Sasaki K, Komori R, Taniguchi M, et al. PGSE is a novel enhancer regulating the proteoglycan pathway of the mammalian Golgi stress response[J]. Cell Struct Funct, 2019, 44(1): 1-19.
doi: 10.1247/csf.18031
pmid: 30487368
|
[8] |
Miyata S, Mizuno T, Koyama Y, et al. The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition[J]. PLoS One, 2013, 8(7): e69732.
|
[9] |
Sampieri L, Di Giusto P, Alvarez C. CREB3 transcription factors: ER-Golgi stress transducers as hubs for cellular homeostasis[J]. Front Cell Dev Biol, 2019, 7: 123.
doi: 10.3389/fcell.2019.00123
pmid: 31334233
|
[10] |
Murakami T, Saito A, Hino SI, et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation[J]. Nat Cell Biol, 2009, 11(10): 1205-1211.
doi: 10.1038/ncb1963
pmid: 19767743
|
[11] |
Zheng ZY, Zhang XY, Huang B, et al. Site-1 protease controls osteoclastogenesis by mediating LC3 transcription[J]. Cell Death Differ, 2021, 28(6): 2001-2018.
doi: 10.1038/s41418-020-00731-6
pmid: 33469231
|
[12] |
Kondo Y, Fu JX, Wang H, et al. Site-1 protease deficiency causes human skeletal dysplasia due to defective inter-organelle protein trafficking[J]. JCI Insight, 2018, 3(14): e121596.
|
[13] |
Dickhout JG, Carlisle RE, Jerome DE, et al. Integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: Cross-talk between integrated stress response and thiol metabolism[J]. J Biol Chem, 2012, 287(10): 7603-7614.
doi: 10.1074/jbc.M111.304576
pmid: 22215680
|
[14] |
Zhang YJ, Wang YH, Read E, et al. Golgi stress response, hydrogen sulfide metabolism, and intracellular calcium homeostasis[J]. Antioxid Redox Signal, 2020, 32(9): 583-601.
|
[15] |
Song AH, Hua YM. Cystathionine γ-lyase-H2S facilitates mandibular defect healing via inducing osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Arch Oral Biol, 2020, 117: 104821.
|
[16] |
Sbodio JI, Snyder SH, Paul BD. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington's disease[J]. Proc Natl Acad Sci USA, 2018, 115(4): 780-785.
doi: 10.1073/pnas.1717877115
pmid: 29317536
|
[17] |
郭健民, 章岚. 自噬对成骨细胞调控作用的研究进展[J]. 中国骨质疏松杂志, 2018, 24(11): 1535-1540.
|
[18] |
孟许亚, 布文奂, 刘杰, 等. 高尔基体通过自噬调控成骨分化的研究进展[J]. 吉林大学学报(医学版), 2018, 44(4): 864-868.
|
[19] |
Li T, You H, Mo XY, et al. GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury[J]. Mol Neurobiol, 2016, 53(2): 1377-1385.
|
[20] |
Li J, Wang YZ. Golgi metal ion homeostasis in human health and diseases[J]. Cells, 2022, 11(2): 289.
|