[1] Santos-Ocampo S, Colvin JS, Chellaiah A, et al. Expression and biological activity of mouse fibroblast growth factor-9[J]. J Biol Chem, 1996, 271(3):1726-1731.
[2] Hecht D, Zimmerman N, Bedford M, et al. Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4 [J]. Growth Factors, 1995, 12(3):223-233.
[3] Robinson D, Hasharoni A, Oganesian A, et al. Role of FGF9 and FGF receptor 3 in osteochondroma formation [J]. Orthopedics, 2001, 24(8):783-778.
[4] Weksler NB, Lunstrum GP, Reid ES, et al. Differential effects of fibroblast growth factor (FGF) 9 and FGF2 on proliferation, differentiation and terminal differentiation of chondrocytic cells in vitro[J]. Biochem J, 1999, 342(Pt 3):677-682.
[5] Garofalo S, Kliger-Spatz M, Cooke JL, et al. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice [J]. J Bone Miner Res, 1999,14(11):1909-1915.
[6] Wu XL, Gu MM, Huang L, et al. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene [J]. Am J Hum Genet, 2009, 85(1):53-63.
[7] White AC, Lavine KJ, Ornitz DM. FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network[J]. Development, 2007,134(20):3743-3752.
[8] Govindarajan V, Overbeek PA. FGF9 can induce endochondral ossification in cranial mesenchyme[J]. BMC Dev Biol, 2006, 6:7.
[9] Hung IH, Yu K, Lavine KJ, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod[J]. Dev Biol, 2007, 307(2): 300-313.
[10] Knight RD, Schilling TF. Cranial neural crest and development of the head skeleton[J]. Adv Exp Med Biol, 2006, 589:120-133.
[11] Chai Y, Maxson RE, Jr. Recent advances in craniofacial morphogenesis [J]. Dev Dyn, 2006, 235(9):2353-2375.
[12] Pan K, Sun Q, Zhang J, et al. Multilineage differentiation of dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/cementoblast-related gene expression in dental follicle cells[J]. Cell Prolif, 2010, 43(3):219-228.
[13] Dai J, Wang J, Lu J, et al. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage[J]. Biomaterials, 2012, 33(31):7699-7711.
[14] Behr B, Leucht P, Longaker MT, et al. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair[J]. Proc Natl Acad Sci U S A, 2010, 107(26):11853-11858.
[15] 陈晓怡, 吴晓林, 顾鸣敏, 等. FGF9 转基因小鼠的功能及组织表达谱的研究[J]. 诊断学理论与实践, 2009, 8(5):496-501.
[16] 卢境婷, 沈国芳. 颅神经嵴细胞迁移的调控[J]. 口腔颌面外科杂志, 2012, 22(1):64-67.
[17] 吕红兵. 颅神经嵴细胞向成骨细胞表型分化的诱导实验[J]. 牙体牙髓牙周病学杂志, 2002,12(8):410-412.
[18] Alappat S, Zhang ZY, Chen YP. Msx homeobox gene family and craniofacial development[J]. Cell Res, 2003, 13(6):429-442.
[19] Kim HJ, Rice DP, Kettunen PJ, et al. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development[J]. Development, 1998, 125(7):1241-1251.
[20] Fakhry A, Ratisoontorn C, Vedhachalam C, et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential [J]. Bone, 2005, 36(2):254-266. |