[1] Kumar RM, Cahan P, Shalek AK, et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells[J]. Nature, 2014, 516(7529):56.
[2] Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines[J]. Exp Mol Med, 2018, 50:96.
[3] Wu XJ, Yang B, Udo-Inyang I, et al. Research techniques made simple: single-cell RNA sequencing and its applications in dermatology[J]. J Invest Dermatol, 2018, 138(5):1004-1009.
[4] Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377.
[5] Ramskold D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8):777-782.
[6] Picelli S, Bjorklund AK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11):1096-8.
[7] Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3):666-73.
[8] Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17(1):77.
[9] Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7):1160-7.
[10] Islam S, Zeisel A, Joost S, et al. Quantitative single-cellRNA-seq with unique molecular identifiers[J]. Nat Methods, 2014, 11(2):163-6.
[11] Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172):776-9.
[12] Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201.
[13] Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.
[14] Vitak SA, Torkenczy KA, Rosenkrantz JL, et al. Sequencing thousands of single-cell genomes with combinatorial indexing[J]. Nat Methods, 2017, 14(3):302-308.
[15] Chen J, Suo SB, Tam PPL, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nat Protoc, 2017, 12(3):566-580.
[16] Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR screening with single-cell transcriptome readout[J]. Nat Methods, 2017, 14(3):297-301.
[17] Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8:14049.
[18] Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652):54.
[19] Hedlund E,Deng QL. Single-cell RNA sequencing: Technical advancements and biological applications[J]. Mol Aspects Med, 2018, 59:36-46.
[20] Liu TT, Wu HJ, Wu SX, et al. Single-cell sequencing technologies for cardiac stem cell studies[J]. Stem Cells Dev, 2017, 26(21):1540-1551.
[21] Murphy TW, Zhang Q, Naler LB, et al. Recent advances in the use of microfluidic technologies for single cell analysis[J]. Analyst, 2018, 143(1):60-80.
[22] Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection[J]. Nat Protoc, 2006, 1(2):586-603.
[23] Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors[J]. Nat Biotechnol, 2011, 29(12):1120-1127.
[24] Boon WC, Petkovic-Duran K, Zhu YG, et al. Increasing cDNA yields from single-cell quantities of mRNA in standard laboratory reverse transcriptase reactions using acoustic microstreaming[J]. J Vis Exp, 2011(53):3144.
[25] Svensson V, Vento-Tormo R,Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nat Protoc, 2018, 13(4):599-604.
[26] Kivioja T, Vaharautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers[J]. Nat Methods, 2012, 9(1):72.
[27] Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease[J]. Nat Rev Nephrol, 2018, 14(8):479-492.
[28] Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells[J]. Nat Biotechnol, 2015, 33(2):155-160.
[29] Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments[J]. Nat Methods, 2013, 10(11):1093-1095.
[30] Kester L,van Oudenaarden A. Single-cell transcriptomics meets lineage tracing[J]. Cell Stem Cell, 2018, 23(2):166-179.
[31] Barry FP,Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization[J]. Int J Biochem Cell Biol, 2004, 36(4):568-584.
[32] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000, 61(4):364-370.
[33] Ghannam S, Bouffi C, Djouad F, et al. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications[J]. Stem Cell Res Ther, 2010, 1(1): 2.
[34] Wang J, Liao LM,Tan JM. Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions[J]. Expert Opin Biol Ther, 2011, 11(7):893-909.
[35] McLeod CM,Mauck RL. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis[J]. Eur Cells Mater, 2017, 34:217-231.
[36] Mindaye ST, Ra M, Lo Surdo JL, et al. Global proteomic signature of undifferentiated human bone marrow stromal cells: Evidence for donor-to-donor proteome heterogeneity[J]. Stem Cell Res, 2013, 11(2):793-805.
[37] Melief SM, Zwaginga JJ, Fibbe WE, et al. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts[J]. Stem Cell Transl Med, 2013, 2(6):455-463.
[38] Vogel W, Grunebach F, Messam CA, et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells[J]. Haematologica, 2003, 88(2):126-133.
[39] Wagner W, Feldmann RE, Seckinger A, et al. The heterogeneity of human mesenchymal stem cell preparations - Evidence from simultaneous analysis of proteomes and transcriptomes[J]. Exp Hematol, 2006, 34(4):536-548.
[40] Wislet-Gendebien S, Poulet C, Neirinckx V, et al. In Vivo tumorigenesis was observed after injection of In Vitro expanded neural crest stem cells isolated from adult bone marrow[J]. PLoS One, 2012, 7(10):e46425.
[41] Li ZJ, Zhang C, Weiner LP, et al. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes[J]. Biotechnol Adv, 2013, 31(2):312-317.
[42] Lei JX, Hui DY, Huang WJ, et al. Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells[J]. Int J Biochem Cell B, 2013, 45(11):2431-2443.
[43] Rennerfeldt DA,Van Vliet KJ. Concise review: when colonies are not clones: evidence and implications of intracolony heterogeneity in mesenchymal stem cells[J]. Stem Cells, 2016, 34(5):1135-1141.
[44] Cote AJ, McLeod CM, Farrell MJ, et al. Single-cell differences in matrix gene expression do not predict matrix deposition[J]. Nat Commun, 2016, 7: 10865.
[45] Freeman BT, Jung JP,Ogle BM. Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming[J]. PLoS One, 2015, 10(9):e0136199.
[46] Li H, Zhu L, Chen H, et al. Generation of Functional hepatocytes from human adipose-derived MYC(+) KLF4(+) GMNN(+) stem cells analyzed by single-Cell RNA-Seq Profiling[J]. Stem Cells Transl Med, 2018,7(11):792-805.
[47] Spitzer MH, Nolan GP. Mass cytometry: single cells, Many features[J]. Cell, 2016, 165(4):780-791.
[48] Bongiorno T, Kazlow J, Mezencev R, et al. Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation[J]. J Biomech, 2014, 47(9):2197-2204.
[49] Li BJ, Menzel U, Loebel C, et al. Monitoring live human mesenchymal stromal cell differentiation and subsequent selection using fluorescent RNA-based probes[J]. Sci Rep, 2016, 6:26014. |