[1] |
Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition[J]. J Exp Zool B Mol Dev Evol, 2006, 306(3): 234-250.
|
[2] |
Renvoisé E, Evans AR, Jebrane A, et al. Evolution of mammal tooth patterns: New insights from a developmental prediction model[J]. Evolution, 2009, 63(5): 1327-1340.
doi: 10.1111/j.1558-5646.2009.00639.x
pmid: 19187252
|
[3] |
Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development[J]. Proc Natl Acad Sci U S A, 2010, 107(35): 15497-15502.
doi: 10.1073/pnas.1002784107
URL
|
[4] |
Peterkova R, Hovorakova M, Peterka M, et al. Three-dimensional analysis of the early development of the dentition[J]. Aust Dent J, 2014, 59(Suppl 1): 55-80.
doi: 10.1111/adj.2014.59.issue-s1
URL
|
[5] |
Mogollón I, Ahtiainen L. Live tissue imaging sheds light on cell level events during ectodermal organ development[J]. Front Physiol, 2020, 11: 818.
doi: 10.3389/fphys.2020.00818
pmid: 32765297
|
[6] |
Lesciotto KM, Motch Perrine SM, Kawasaki M, et al. Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice[J]. Dev Dyn, 2020, 249(4): 573-585.
doi: 10.1002/dvdy.v249.4
URL
|
[7] |
Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis[J]. Mech Dev, 2000, 92(1): 19-29.
doi: 10.1016/S0925-4773(99)00322-6
URL
|
[8] |
Kawasaki M, Porntaveetus T, Kawasaki K, et al. R-spondins/Lgrs expression in tooth development[J]. Dev Dyn, 2014, 243(6): 844-851.
doi: 10.1002/dvdy.v243.6
URL
|
[9] |
Hermans F, Hemeryck L, Lambrichts I, et al. Intertwined signaling pathways governing tooth development: A give-and-take between canonical Wnt and shh[J]. Front Cell Dev Biol, 2021, 9: 758203.
doi: 10.3389/fcell.2021.758203
URL
|
[10] |
Sagai T, Amano T, Maeno A, et al. SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development[J]. Sci Rep, 2017, 7(1): 13004.
doi: 10.1038/s41598-017-12532-y
pmid: 29021530
|
[11] |
Seppala M, Thivichon-Prince B, Xavier GM, et al. Gas1 regulates patterning of the murine and human dentitions through sonic hedgehog[J]. J Dent Res, 2022, 101(4): 473-482.
doi: 10.1177/00220345211049403
URL
|
[12] |
Seppala M, Depew MJ, Martinelli DC, et al. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog[J]. J Clin Invest, 2007, 117(6): 1575-1584.
doi: 10.1172/JCI32032
pmid: 17525797
|
[13] |
Cords SS. Mammal teeth: Origin, evolution, and diversity[J]. Libr J, 2010, 135(20): 135.
|
[14] |
Panousopoulou E, Green JB. Invagination of ectodermal placodes is driven by cell intercalation-mediated contraction of the suprabasal tissue canopy[J]. PLoS Biol, 2016, 14(3): e1002405.
doi: 10.1371/journal.pbio.1002405
URL
|
[15] |
Mammoto T, Mammoto A, Torisawa YS, et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation[J]. Dev Cell, 2011, 21(4): 758-769.
doi: 10.1016/j.devcel.2011.07.006
pmid: 21924961
|
[16] |
Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth[J]. Nat Rev Genet, 2004, 5(7): 499-508.
doi: 10.1038/nrg1380
pmid: 15211352
|
[17] |
Rosowski J, Bräunig J, Amler AK, et al. Emulating the early phases of human tooth development in vitro[J]. Sci Rep, 2019, 9(1): 7057.
doi: 10.1038/s41598-019-43468-0
pmid: 31065008
|
[18] |
Yuan GH, Zhang L, Zhang YD, et al. Mesenchyme is responsible for tooth suppression in the mouse lower diastema[J]. J Dent Res, 2008, 87(4): 386-390.
pmid: 18362325
|
[19] |
Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs.Ⅰ. Reorganization of the dental epithelium during tooth-germ reconstruction[J]. J Embryol Exp Morphol, 1970, 24(1): 159-171.
pmid: 5487154
|
[20] |
Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs.Ⅱ. The inductive role of the dental papilla[J]. J Embryol Exp Morphol, 1970, 24(1): 173-186.
pmid: 5487155
|
[21] |
Thesleff I, Sharpe P. Signalling networks regulating dental development[J]. Mech Dev, 1997, 67(2): 111-123.
doi: 10.1016/S0925-4773(97)00115-9
URL
|
[22] |
Ohazama A, Haycraft CJ, Seppala M, et al. Primary cilia regulate Shh activity in the control of molar tooth number[J]. Development, 2009, 136(6): 897-903.
doi: 10.1242/dev.027979
pmid: 19211681
|
[23] |
Peterková R, Lesot H, Viriot L, et al. The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors[J]. Arch Oral Biol, 2005, 50(2): 219-225.
pmid: 15721153
|
[24] |
Charles C, Pantalacci S, Tafforeau P, et al. Distinct impacts of Eda and Edar loss of function on the mouse dentition[J]. PLoS One, 2009, 4(4): e4985.
doi: 10.1371/journal.pone.0004985
URL
|
[25] |
Li L, Yuan GH, Liu C, et al. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo[J]. Dev Dyn, 2011, 240(6): 1344-1353.
doi: 10.1002/dvdy.v240.6
URL
|
[26] |
Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling[J]. Dev Cell, 2006, 11(2): 181-190.
doi: 10.1016/j.devcel.2006.05.014
pmid: 16890158
|
[27] |
Peterkova R, Churava S, Lesot H, et al. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis[J]. J Exp Zool B Mol Dev Evol, 2009, 312B(4): 292-308.
doi: 10.1002/jez.b.v312b:4
URL
|
[28] |
Cai JL, Cho SW, Kim JY, et al. Patterning the size and number of tooth and its cusps[J]. Dev Biol, 2007, 304(2): 499-507.
doi: 10.1016/j.ydbio.2007.01.002
pmid: 17289014
|
[29] |
Hashmi B, Mammoto T, Weaver J, et al. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds[J]. Stem Cell Res, 2017, 24: 55-60.
doi: S1873-5061(17)30166-6
pmid: 28841424
|