[1] |
Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization[J]. Nat Cell Biol, 2020, 22(1): 38-48.
doi: 10.1038/s41556-019-0439-6
pmid: 31871321
|
[2] |
Carlberg K, Korotkova M, Larsson L, et al. Exploring inflammatory signatures in arthritic joint biopsies with Spatial Transcriptomics[J]. Sci Rep, 2019, 9(1): 18975.
doi: 10.1038/s41598-019-55441-y
pmid: 31831833
|
[3] |
Muzzey D, Evans EA, Lieber C. Understanding the basics of NGS: From mechanism to variant calling[J]. Curr Genet Med Rep, 2015, 3(4): 158-165.
doi: 10.1007/s40142-015-0076-8
URL
|
[4] |
孟小高, 彭广敦. 单细胞测序技术在肺发育中的研究进展[J]. 生命科学, 2022, 34(1): 99-106.
|
[5] |
Tang FC, Barbacioru C, Wang YZ, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
doi: 10.1038/nmeth.1315
pmid: 19349980
|
[6] |
危莹, 张小丹, 胡苗苗, 等. 空间转录组技术研究进展[J]. 生物化学与生物物理进展, 2022, 49(3): 561-571.
|
[7] |
Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78-82.
doi: 10.1126/science.aaf2403
pmid: 27365449
|
[8] |
Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations[J]. Proc Natl Acad Sci U S A, 1969, 63(2): 378-383.
doi: 10.1073/pnas.63.2.378
URL
|
[9] |
Al-Sabah J, Baccin C, Haas S. Single-cell and spatial transcriptomics approaches of the bone marrow microenvironment[J]. Curr Opin Oncol, 2020, 32(2): 146-153.
doi: 10.1097/CCO.0000000000000602
pmid: 31833957
|
[10] |
Rao A, Barkley D, França GS, et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596(7871): 211-220.
doi: 10.1038/s41586-021-03634-9
|
[11] |
Chen A, Liao S, Cheng MN, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays[J]. Cell, 2022, 185(10): 1777-1792.e21.
doi: 10.1016/j.cell.2022.04.003
pmid: 35512705
|
[12] |
Ke RQ, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells[J]. Nat Methods, 2013, 10(9): 857-860.
doi: 10.1038/nmeth.2563
pmid: 23852452
|
[13] |
Shah S, Takei Y, Zhou W, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH[J]. Cell, 2018, 174(2): 363-376.e16.
doi: S0092-8674(18)30647-0
pmid: 29887381
|
[14] |
Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart[J]. Cell, 2019, 179(7): 1647-1660.e19.
doi: S0092-8674(19)31282-6
pmid: 31835037
|
[15] |
Levy-Jurgenson A, Tekpli X, Kristensen VN, et al. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer[J]. Sci Rep, 2020, 10(1): 18802.
doi: 10.1038/s41598-020-75708-z
pmid: 33139755
|
[16] |
Ortiz C, Navarro JF, Jurek A, et al. Molecular atlas of the adult mouse brain[J]. Sci Adv, 2020, 6(26): eabb3446.
|
[17] |
Moncada R, Barkley D, Wagner F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nat Biotechnol, 2020, 38(3): 333-342.
doi: 10.1038/s41587-019-0392-8
pmid: 31932730
|
[18] |
Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019, 363(6434): 1463-1467.
doi: 10.1126/science.aaw1219
pmid: 30923225
|
[19] |
Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue[J]. Nat Biotechnol, 2020, 38(5): 586-599.
doi: 10.1038/s41587-020-0472-9
pmid: 32393914
|
[20] |
He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning[J]. Nat Biomed Eng, 2020, 4(8): 827-834.
doi: 10.1038/s41551-020-0578-x
pmid: 32572199
|