[1] |
林李芃, 徐凯, 袁峥鼎, 等. 纳米复合材料结合分子影像技术及其在口腔鳞状细胞癌热疗中的应用[J]. 中国介入影像与治疗学, 2019, 16(7):439-443.
|
[2] |
马莹, 肖莉, 唐婉容, 等. 口腔鳞癌患者唾液中的肿瘤标志物研究进展[J]. 重庆医学, 2018, 47(13):1786-1789.
|
[3] |
Wang X, Guo H, Yao B, et al. MiR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer[J]. Oncol Rep, 2017, 37(5):2720-2726.
doi: 10.3892/or.2017.5532
pmid: 28350138
|
[4] |
Sun GL, Li Z, Wang WZ, et al. MiR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway[J]. J Gastroenterol, 2018, 53(6): 725-739.
doi: 10.1007/s00535-017-1408-0
URL
|
[5] |
杜莉, 曹伟靖, 田莹, 等. miR-140-5p对口腔鳞状细胞癌细胞增殖及凋亡的影响[J]. 口腔生物医学, 2017, 8(4):186-190.
|
[6] |
Fattore L, Mancini R, Acunzo M, et al. MiR-579-3p controls melanoma progression and resistance to target therapy[J]. Proc Natl Acad Sci USA, 2016, 113(34): E5005-E5013.
|
[7] |
Wu RR, Zhong Q, Liu HF, et al. Role of miR-579-3p in the development of squamous cell lung carcinoma and the regulatory mechanisms[J]. Eur Rev Med Pharmacol Sci, 2019, 23(21): 9464-9470.
|
[8] |
Yu C, Zhang FC. LncRNA AC009022.1 enhances colorectal cancer cells proliferation, migration, and invasion by promoting ACTR3B expression via suppressing miR-497-5p[J]. J Cell Biochem, 2020, 121(2):1934-1944.
doi: 10.1002/jcb.29428
pmid: 31637768
|
[9] |
冯晋, 任仪鹏, 董丽平. 过表达FOXC1基因对口腔鳞状细胞癌增殖凋亡及迁移能力的影响[J]. 中华老年口腔医学杂志, 2018, 16(5):257-261.
|
[10] |
汪晓龙, 曹顺顺, 张鹏, 等. 人源性长寿保障基因2在口腔鳞癌组织中表达及对细胞增殖和侵袭能力的影响[J]. 口腔医学研究, 2019, 35(2):142-146.
doi: 10.13701/j.cnki.kqyxyj.2019.02.010
|
[11] |
Ganju A, Khan S, Hafeez BB, et al. MiRNA nanotherapeutics for cancer[J]. Drug Discov Today, 2017, 22(2):424-432.
doi: S1359-6446(16)30408-1
pmid: 27815139
|
[12] |
He B, Lin X, Tian F, et al. MiR-133a-3p inhibits oral squamous cell carcinoma (OSCC) proliferation and invasion by suppressing COL1A1[J]. J Cell Biochem, 2018, 119(1):338-346.
doi: 10.1002/jcb.26182
pmid: 28569392
|
[13] |
Rastogi B, Kumar A, Raut SK, et al. Downregulation of miR-377 promotes oral squamous cell carcinoma growth and migration by targeting HDAC9[J]. Cancer Invest, 2017, 35(3):152-162.
doi: 10.1080/07357907.2017.1286669
pmid: 28267394
|
[14] |
Yang F, Ning Z, Ma L, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts[J]. Mol Cancer, 2017, 16(1):148.
doi: 10.1186/s12943-017-0718-4
pmid: 28851377
|
[15] |
Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer[J]. Nat Commun, 2018, 9(1):191-203.
doi: 10.1038/s41467-017-02583-0
pmid: 29335551
|
[16] |
Wang XH, Qu HJ, Dong YH, et al. Targeting signal-transducer-and-activator-of-transcription 3 sensitizes human cutaneous melanoma cells to BRAF inhibitor[J]. Cancer Biomark, 2018, 23(1):67-77.
doi: 10.3233/CBM-181365
URL
|
[17] |
Yılmaz Ş G, Geyik S, Neyal AM, et al. Hypothesis: do miRNAs targeting the leucine-rich repeat kinase 2 gene (LRRK2) influence parkinson's disease susceptibility[J]. OMICS, 2016, 20(4):224-228.
doi: 10.1089/omi.2016.0040
URL
|
[18] |
Liu SL, Liu Z, Zhang LD, et al. GSK3β-dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells[J]. Cell Cycle, 2017, 16(24):2386-2395.
doi: 10.1080/15384101.2017.1383577
URL
|
[19] |
Freire R, d'Adda Di Fagagna F, Wu L, et al. Cleavage of the bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase Ⅲ alpha[J]. Nucleic Acids Res, 2001, 29(15):3172-3180.
pmid: 11470874
|