[1] |
Parzych KR, Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473.
doi: 10.1089/ars.2013.5371
URL
|
[2] |
韩冰, 李娜, 祁红延, 等. LC3和beclinl在口腔黏膜癌变过程中不同时期的变化及其意义[J]. 中国组织化学与细胞化学杂志, 2017, 26(1): 42-47.
|
[3] |
Hönscheid P, Datta K, Muders MH. Autophagy: Detection, regulation and its role in cancer and therapy response[J]. Int J Radiat Biol, 2014, 90(8): 628-635.
doi: 10.3109/09553002.2014.907932
pmid: 24678799
|
[4] |
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer[J]. Genes Dev, 2016, 30(17): 1913-1930.
doi: 10.1101/gad.287524.116
URL
|
[5] |
岳增文, 王树斌, 刘进忠. 过表达LATS2基因诱导口腔鳞癌细胞自噬的初步研究[J]. 实用口腔医学杂志, 2020, 36(1): 28-31.
|
[6] |
朱钧一, 唐清明, 陈莉莉, 等. Axl抑制剂R428诱导口腔鳞癌Cal27细胞自噬的研究[J]. 实用口腔医学杂志, 2019, 35(3): 335-339.
|
[7] |
Qiu Y, Li CH, Wang QH, et al. Tanshinone IIA induces cell death via Beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line[J]. Cancer Med, 2018, 7(2): 397-407.
doi: 10.1002/cam4.2018.7.issue-2
URL
|
[8] |
Naik PP, Mukhopadhyay S, Panda PK, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma[J]. Cell Prolif, 2018, 51(1): e12411.
|
[9] |
Khan T, Relitti N, Brindisi M, et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas[J]. Med Res Rev, 2020, 40(3): 1002-1060.
doi: 10.1002/med.21646
pmid: 31742748
|
[10] |
Ritchie ME, Phipson B, Wu D, et al. Limma Powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
|
[11] |
Yu GC, Wang LG, Han YY, et al. Cluster Profiler: An R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
doi: 10.1089/omi.2011.0118
URL
|
[12] |
Engebretsen S, Bohlin J. Statistical predictions with glmnet[J]. Clin Epigenetics, 2019, 11(1): 123.
doi: 10.1186/s13148-019-0730-1
pmid: 31443682
|
[13] |
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: Users' guides to the medical literature[J]. JAMA, 2017, 318(14): 1377-1384.
doi: 10.1001/jama.2017.12126
pmid: 29049590
|
[14] |
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5): 453-457.
doi: 10.1038/nmeth.3337
pmid: 25822800
|
[15] |
Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: Recent advances and future directions[J]. Cancer Discov, 2019, 9(9): 1167-1181.
doi: 10.1158/2159-8290.CD-19-0292
pmid: 31434711
|
[16] |
Harsha C, Banik K, Ang HL, et al. Targeting AKT/mTOR in oral cancer: Mechanisms and advances in clinical trials[J]. Int J Mol Sci, 2020, 21(9): E3285.
|
[17] |
Martinez-Outschoorn UE, Pavlides S, Howell A, et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment[J]. Int J Biochem Cell Biol, 2011, 43(7): 1045-1051.
doi: 10.1016/j.biocel.2011.01.023
pmid: 21300172
|
[18] |
Adhauliya N, Kalappanavar AN, Ali IM, et al. Autophagy: A boon or bane in oral cancer[J]. Oral Oncol, 2016, 61: 120-126.
doi: 10.1016/j.oraloncology.2016.09.001
pmid: 27688114
|
[19] |
梁珊珊, 陈慧, 沈亚俊, 等. 自噬在漏芦提取物抑制口腔癌生长中的作用[J]. 北京口腔医学, 2022, 30(3): 153-159.
|
[20] |
许小鸿, 郅程, 袁忠民. 荜茇酰胺通过诱导口腔鳞癌细胞自噬抑制增殖[J]. 中山大学学报(医学科学版), 2021, 42(4): 543-549.
|
[21] |
薛瑞, 高继萍, 闫晓如, 等. 自噬相关基因及信号通路在口腔肿瘤发生发展中的影响[J]. 肿瘤防治研究, 2021, 48(5): 514-518.
|
[22] |
Liang LZ, Luo HJ, He QF, et al. Investigation of cancer-associated fibroblasts and p62 expression in oral cancer before and after chemotherapy[J]. J Craniomaxillofac Surg, 2018, 46(4): 605-610.
doi: S1010-5182(17)30448-1
pmid: 29439841
|
[23] |
Hou C, Cai HS, Zhu Y, et al. Development and validation of autophagy-related gene signature and nomogram for predicting survival in oral squamous cell carcinoma[J]. Front Oncol, 2020, 10: 558596.
doi: 10.3389/fonc.2020.558596
URL
|
[24] |
Yang YX, Chen D, Liu H, et al. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma[J]. Cell Death Dis, 2019, 10(2): 41.
doi: 10.1038/s41419-018-1280-8
pmid: 30674868
|
[25] |
Wang DW, Qi H, Zhang HX, et al. TAF1L promotes development of oral squamous cell carcinoma via decreasing autophagy-dependent apoptosis[J]. Int J Biol Sci, 2020, 16(7): 1180-1193.
doi: 10.7150/ijbs.41148
pmid: 32174793
|
[26] |
Hung CC, Chien CY, Chu PY, et al. Differential resistance to platinum-based drugs and 5-fluorouracil in p22phox-overexpressing oral squamous cell carcinoma: Implications of alternative treatment strategies[J]. Head Neck, 2017, 39(8): 1621-1630.
doi: 10.1002/hed.v39.8
URL
|
[27] |
Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor(EGFR) and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma(HNSCC)[J]. Cancer Treat Rev, 2014, 40(4): 567-577.
doi: 10.1016/j.ctrv.2013.10.002
URL
|
[28] |
Wree A, Johnson CD, Font-Burgada J, et al. Hepatocyte-specific Bid depletion reduces tumor development by suppressing inflammation-related compensatory proliferation[J]. Cell Death Differ, 2015, 22(12): 1985-1994.
doi: 10.1038/cdd.2015.46
pmid: 25909884
|
[29] |
Sinicrope FA, Rego RL, Foster NR, et al. Proapoptotic Bad and Bid protein expression predict survival in stages Ⅱ and Ⅲ colon cancers[J]. Clin Cancer Res, 2008, 14(13): 4128-4133.
doi: 10.1158/1078-0432.CCR-07-5160
pmid: 18593990
|
[30] |
Abe M, Yamashita S, Mori Y, et al. High-risk oral leukoplakia is associated with aberrant promoter methylation of multiple genes[J]. BMC Cancer, 2016, 16: 350.
doi: 10.1186/s12885-016-2371-5
pmid: 27255271
|
[31] |
Tellez CS, Shen LL, Estécio MR, et al. CpG island methylation profiling in human melanoma cell lines[J]. Melanoma Res, 2009, 19(3): 146-155.
doi: 10.1097/cmr.0b013e32832b274e
pmid: 19441164
|
[32] |
Lin H, Liu SF, Gao WD, et al. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ[J]. J Pharm Pharmacol, 2020, 72(6): 807-815.
doi: 10.1111/jphp.13243
pmid: 32189359
|
[33] |
Muñoz-Guardiola P, Casas J, Megías-Roda E, et al. The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells[J]. Autophagy, 2021, 17(6): 1349-1366.
doi: 10.1080/15548627.2020.1761651
URL
|
[34] |
Wang S, Hou PL, Pan W, et al. DDIT3 targets innate immunity via the DDIT3-OTUD1-MAVS pathway to promote bovine viral diarrhea virus replication[J]. J Virol, 2021, 95(6): e02351-e02320.
|
[35] |
Wu CS, Chang IY, Hung JL, et al. ASC modulates HIF-1α stability and induces cell mobility in OSCC[J]. Cell Death Dis, 2020, 11(9): 721.
doi: 10.1038/s41419-020-02927-7
|
[36] |
Sakata J, Hirosue A, Yoshida R, et al. HMGA2 contributes to distant metastasis and poor prognosis by promoting angiogenesis in oral squamous cell carcinoma[J]. Int J Mol Sci, 2019, 20(10): E2473.
|
[37] |
Chien HT, Cheng SD, Chuang WY, et al. Clinical implications of FADD gene amplification and protein overexpression in Taiwanese oral cavity squamous cell carcinomas[J]. PLoS One, 2016, 11(10): e0164870.
|
[38] |
Troiano G, Guida A, Aquino G, et al. Integrative histologic and bioinformatics analysis of BIRC5/survivin expression in oral squamous cell carcinoma[J]. Int J Mol Sci, 2018, 19(9): E2664.
|
[39] |
Kurachi M. CD8+ T cell exhaustion[J]. Semin Immun-opathol, 2019, 41(3): 327-337.
|
[40] |
Ngiow SF, Young A, Jacquelot N, et al. A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1[J]. Cancer Res, 2015, 75(18): 3800-3811.
|
[41] |
Carleton G, Lum JJ. Autophagy metabolically suppresses CD8+ T cell antitumor immunity[J]. Autophagy, 2019, 15(9): 1648-1649.
doi: 10.1080/15548627.2019.1628545
pmid: 31170865
|