[1] |
Li Y, Jacox LA, Little SH, et al. Orthodontic tooth movement: The biology and clinical implications[J]. Kaohsiung J Med Sci, 2018, 34(4): 207-214.
doi: 10.1016/j.kjms.2018.01.007
URL
|
[2] |
Holland R, Bain C, Utreja A. Osteoblast differentiation during orthodontic tooth movement[J]. Orthod Craniofac Res, 2019, 22(3): 177-182.
doi: 10.1111/ocr.12308
pmid: 30839159
|
[3] |
Huang H, Yang R, Zhou YH. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement[J]. Stem Cells Int, 2018, 2018: 6531216.
|
[4] |
何奕德, 马小杰, 张立强, 等. 牙周膜干细胞在正畸牙移动中的作用及机制研究[J]. 牙体牙髓牙周病学杂志, 2016, 26(7): 411-417,438.
|
[5] |
Sardiwal S, Magnusson P, Goldsmith DJ, et al. Bone alkaline phosphatase in CKD-mineral bone disorder[J]. Am J Kidney Dis, 2013, 62(4): 810-822.
doi: 10.1053/j.ajkd.2013.02.366
pmid: 23623575
|
[6] |
Chen N, Sui BD, Hu CH, et al. MicroRNA-21 contributes to orthodontic tooth movement[J]. J Dent Res, 2016, 95(12): 1425-1433.
doi: 10.1177/0022034516657043
pmid: 27422860
|
[7] |
Liu AQ, Zhang LS, Chen J, et al. Mechanosensing by Gli1+ cells contributes to the orthodontic force-induced bone remodelling[J]. Cell Prolif, 2020, 53(5): e12810.
doi: 10.1111/cpr.v53.5
URL
|
[8] |
He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015, 94(9): 1286-1294.
doi: 10.1177/0022034515589714
pmid: 26124217
|
[9] |
Schröder A, Barschkies L, Jantsch J, et al. Role of oxygen supply in macrophages in a model of simulated orthodontic tooth movement[J]. Mediators Inflamm, 2020, 2020: 5802435.
|
[10] |
Singh A, Gill G, Kaur H, et al. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review[J]. Prog Orthod, 2018, 19(1): 18.
doi: 10.1186/s40510-018-0216-2
pmid: 29938297
|
[11] |
MacGregor GR, Zambrowicz BP, Soriano P. Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells[J]. Development, 1995, 121(5): 1487-1496.
doi: 10.1242/dev.121.5.1487
pmid: 7789278
|
[12] |
Liu W, Zhang L, Xuan K, et al. Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells[J]. Bone Res, 2018, 6: 27.
doi: 10.1038/s41413-018-0029-4
pmid: 30210899
|
[13] |
Fedde KN, Blair L, Silverstein J, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia[J]. J Bone Miner Res, 1999, 14(12): 2015-2026.
doi: 10.1359/jbmr.1999.14.12.2015
pmid: 10620060
|
[14] |
Hernández-Chirlaque C, Gámez-Belmonte R, Ocón B, et al. Tissue non-specific alkaline phosphatase expression is needed for the full stimulation of T cells and T cell-dependent colitis[J]. J Crohns Colitis, 2017, 11(7): 857-870.
doi: 10.1093/ecco-jcc/jjw222
pmid: 28039309
|
[15] |
Groeger M, Spanier G, Wolf M, et al. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure[J]. PLoS One, 2020, 15(8): e0237040.
|
[16] |
Dutra EH, Ahmida A, Lima A, et al. The effects of alveolar decortications on orthodontic tooth movement and bone remodelling in rats[J]. Eur J Orthod, 2018, 40(4): 423-429.
doi: 10.1093/ejo/cjx080
URL
|
[17] |
Decker MG, Nottmeier C, Luther J, et al. Role of c-Fos in orthodontic tooth movement: An in vivo study using transgenic mice[J]. Clin Oral Investig, 2021, 25(2): 593-601.
doi: 10.1007/s00784-020-03503-1
|
[18] |
梁莉, 刘洪臣, 周威, 等. 牙周膜成纤维细胞对成骨细胞细胞数量和碱磷酶活性的影响[J]. 中华老年口腔医学杂志, 2012, 10(2): 72-74.
|
[19] |
Tang N, Zhao Z, Zhang L, et al. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain[J]. Arch Med Sci, 2012, 8(3): 422-430.
doi: 10.5114/aoms.2012.28810
pmid: 22851995
|