[1] Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering[J]. Biomaterials, 2000,21(23):2347-2359.
[2] Frenken JW, Bouwman WF, Bravenboer N, et al. The use of Straumann Bone Ceramic in a maxillary sinus floor elevation procedure: a clinical, radiological, histological and histomorphometric evaluation with a 6-month healing period[J]. Clin Oral Implants Res, 2010,21(2):201-208.
[3] Jensen SS, Broggini N, HjФrting-Hansen E, et al. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs[J]. Clin Oral Implants Res, 2006,17(3):237-243.
[4] Hench LL, Polak JM. Third-generation biomedical materials[J]. Science, 2002, 295(5557): 1014-1017.
[5] Houmard M, Fu Q, Saiz E, et al. Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering[J]. J Mater Sci Mater Med, 2012,23(4):921-930.
[6] Montazeri L, Javadpour J, Shokrgozar MA, et al. Hydroth-ermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders[J]. Biomed Mater, 2010,5(4):045004.
[7] Terra J, Dourado ER, Eon JG, et al. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study[J]. Phys Chem Chem Phys, 2009,11(3):568-577.
[8] Gentleman E, Fredholm YC, Jell G, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro[J]. Biomaterials, 2010,31(14):3949-3956.
[9] Reginster JY, Bruyere O, Collette J. Strontium ranelate treatment increases osteoprotegerin serum levels in postmenopausal osteoporotic women[J]. Bone, 2012,50(5):1201-1202.
[10] Deeks ED, Dhillon S. Strontium ranelate: a review of its use in the treatment of postmenopausal osteoporosis[J]. Drugs, 2010,70(6):733-759.
[11] Barbara A, Delannoy P, Denis BG, et al. Normal matrixmineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells[J]. Metabolism, 2004,53(4):532-537.
[12] Saidak Z, Ha■ E, Marty C, et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling[J]. Aging Cell, 2012.
[13] Ni GX, Lu WW, Xu B, et al. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancell-ous and cortical bone[J]. Biomaterials, 2006,27(29):5127-5133.
[14] Hench LL, Wilson J. Surface-active biomaterials[J]. Science, 1984,226(4675):630-636.
[15] Han X, Day DE. Reaction of sodium calcium borate glasses to form hydroxyapatite[J]. J Mater Sci Mater Med, 2007,18(9):1837-1847.
[16] Liu X, Xie Z, Zhang C, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection[J]. J Mater Sci Mater Med, 2010,21(2):575-582.
[17] Jia W T, Zhang X, Luo S H, et al. Novel borate glass/chit-osan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis[J]. Acta Biomater, 2010,6(3):812-819.
[18] Gorustovich AA, López JM, Guglielmotti MB, et al. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow[J]. Biomed Mater, 2006,1(3):100-105.
[19] Wu C, Miron R, Sculean A, et al. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds[J]. Biomaterials, 2011,32(29):7068-7078.
[20] Kannan MB, Orr L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy[J]. Biomed Mater, 2011,6(4):045003.
[21] Efthimiadis J, Neil WC, Bunter A, et al. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy[J]. ACS Appl Mater Interfaces, 2010,2(5):1317-1323.
[22] Wu C, Chang J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics[J]. J Biomed Mater Res B Appl Biomater, 2007,83(1):153-160.
[23] Wu C, Chang J. A novel akermanite bioceramic: preparation and characteristics[J]. J Biomater Appl, 2006,21(2):119-129.
[24] Liu Q, Cen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics[J]. Biomaterials, 2008, 29(36): 4792-4799.
[25] Sun H, Wu C, Dai K, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics[J]. Biomaterials, 2006, 27(33): 5651-5657.
[26] Xia L, Zhang Z, Chen L, et al. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics[J]. Eur Cell Mater, 2011,22:68-82.
[27] Gu H, Guo F, Zhou X, et al. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway[J]. Biomaterials, 2011,32(29):7023-7033.
[28] Zhai W, Lu H, Chen L, et al. Silicate bioceramics induce angiogenesis during bone regeneration[J]. Acta Biomater, 2012,8(1):341-349.
[29] Ghani Y, Coathup MJ, Hing KA, et al. Development of a hydroxyapatite coating containing silver for the prevention of peri-prosthetic infection[J]. J Orthop Res, 2012,30(3):356-363. |