[1] Ferguson MW. Palate development[J]. Development, 1988, 103(Suppl: 41-60.
[2] Gritli-Linde A. Molecular control of secondary palate development[J]. Dev Biol, 2007, 301(2): 309-326.
[3] Jugessur A, Farlie PG, Kilpatrick N. The genetics of isolated orofacial clefts: from genotypes to subphenotypes[J]. Oral Dis, 2009, 15(7): 437-453.
[4] Tavella S, Biticchi R, Schito A, et al. Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression[J]. J Bone Miner Res, 2004, 19(10): 1678-1688.
[5] Kiefer JC. Back to basics: Sox genes[J]. Dev Dyn, 2007, 236(8): 2356-2366.
[6] Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development[J]. Trends Genet, 2000, 16(4): 182-187.
[7] Wilson M, Koopman P. Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators[J]. Curr Opin Genet Dev, 2002, 12(4): 441-446.
[8] Berta P, Hawkins JR, Sinclair AH, et al. Genetic evidence equating SRY and the testis-determining factor[J]. Nature, 1990, 348(6300): 448-450.
[9] Harley VR, Jackson DI, Hextall PJ, et al. DNA binding activity of recombinant SRY from normal males and XY females[J]. Science, 1992, 255(5043): 453-456.
[10] Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenital[J]. Nature,1994,372(6507):635-641.
[11] Lefrebvre V, de Crombrugghe B. Toward understanding S0X9 function in chondrocyte differentiation[J]. Matrix Biol, 1998, 16(9): 529-540.
[12] Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation[J]. Birth Defects Res C Embryo Today, 2005, 75(3): 200-212.
[13] Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators[J]. Dev Biol, 2000, 227(2): 239-255.
[14] Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families[J]. Dev Cell, 2002, 3(2):167-170.
[15] Hong CS, Saint-Jeannet JP. Sox proteins and neural crest development[C]//Seminars in cell & developmental biology. Academic Press, 2005, 16(6): 694-703.
[16] Haldin CE, LaBonne C. SoxE factors as multifunctional neural crest regulatory factors[J]. Int J Biochem Cell Biol, 2010, 42(3): 441-444.
[17] Wegner M. A matter of identity: transcriptional control in oligodendrocytes[J]. J Mol Neurosci, 2008, 35(1): 3-12.
[18] Stolt CC, Wegner M. SoxE function in vertebrate nervous system development[J]. Int J Biochem Cell Biol, 2010, 42(3): 437-440.
[19] Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9[J]. Cell, 1994, 79(6): 1111-1120.
[20] Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene[J]. Nature, 1994, 372(6506): 525-529.
[21] Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9[J]. Development, 2003, 130(23): 5681-5693.
[22] Mori-Akiyama Y, Akiyama H, Rowitch DH, et al. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest[J]. Proc Natl Acad Sci USA, 2003, 100(16): 9360-9365.
[23] Bi W, Huang W, Whitworth DJ, et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6698-6703.
[24] Le Douarin N, Kalcheim C. The neural crest[M]. Second ed. London: Cambridge Univ, 1999.
[25] Chiang EF, Pai CI, Wyatt M, et al. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites[J]. Dev Biol, 2001, 231(1): 149-163.
[26] Li M, Zhao C, Wang Y, et al. Zebrafish sox9b is an early neural crest marker[J]. Dev Genes Evol, 2002, 212(4): 203-206.
[27] Yan YL, Miller CT, Nissen RM, et al. A zebrafish sox9 gene required for cartilage morphogenesis[J]. Development, 2002, 129(21): 5065-5079.
[28] Yan YL, Willoughby J, Liu D, et al. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development[J]. Development, 2005, 132(5): 1069-1083.
[29] Spokony RF, Aoki Y, Saint-Germain N, et al. The transcription factor Sox9 is required for cranial neural crest development in Xenopus[J]. Development, 2002, 129(2): 421-432.
[30] Sadaghiani B, Thiébaud CH. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy[J]. Dev Biol, 1987, 124(1): 91-110.
[31] Gross JB, Hanken J. Segmentation of the vertebrate skull: neural-crest derivation of adult cartilages in the clawed frog, Xenopus laevis[J]. Integr Comp Biol, 2008, 48(5): 681-696.
[32] Kerney R, Gross JB, Hanken J. Runx2 is essential for larval hyobranchial cartilage formation in Xenopus laevis[J]. Dev Dyn, 2007, 236(6): 1650-1662.
[33] Lee YH, Aoki Y, Hong CS, et al. Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus[J]. Dev Biol, 2004, 275(1): 93-103.
[34] Ng LJ, Wheatley S, Muscat GE, et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse[J]. Dev Biol, 1997, 183(1): 108-121.
[35] Zhao Q, Eberspaecher H, Lefebvre V, et al. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis[J]. Devl Dyn, 1997, 209(4): 377-386.
[36] Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos[J]. Nat genet, 1995, 9(1): 15-20.
[37] Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation[J]. Nat genet, 1999, 22(1): 85-89.
[38] Cheung M, Chaboissier MC, Mynett A, et al. The transcriptional control of trunk neural crest induction, survival, and delamination[J]. Dev Cell, 2005, 8(2): 179-192.
[39] Nie X. Sox9 mRNA expression in the developing palate and craniofacial muscles and skeletons[J]. Acta Odontol Scand, 2006, 64(2): 97-103.
[40] Dudas M, Sridurongrit S, Nagy A, et al. Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells[J]. Mech Dev, 2004, 121(2): 173-182.
[41] Liu W, Sun X, Braut A, et al. Distinct functions for Bmp signaling in lip and palate fusion in mice[J]. Development, 2005, 132(6): 1453-1461.
[42] Theodosiou NA, Tabin CJ. Sox9 and Nk x 2.5 determine the pyloric sphincter epithelium under the control of BMP signaling[J]. Dev Biol, 2005, 279(2): 481-490.
[43] Shuler CF, Dalrymple KR. Molecular regulation of tongue and craniofacial muscle differentiation[J]. Crit Rev Oral Biol Med, 2001, 12(1): 3-17.
[44] Yamane A, Mayo M, Shuler C, et al. Expression of myogenic regulatory factors during the development of mouse tongue striated muscle[J]. Arch Oral Biol, 2000, 45(1): 71-78.
[45] Yamashiro T, Wang XP, Li Z, et al. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification[J]. J Bone Miner Res, 2004, 19(10): 1671-1677.
[46] Nakamura Y, Yamamoto K, He X, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25[J]. Nat Commun, 2011, 2: 251. |