[1] |
Bhullar BS, Manafzadeh AR, Miyamae JA, et al. Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function[J]. Nature, 2019, 566(7745):528-532.
doi: 10.1038/s41586-019-0940-x
|
[2] |
Verhelst PJ, Van der Cruyssen F, De Laat A, et al. The biomechanical effect of the sagittal split ramus osteotomy on the temporomandibular joint: current perspectives on the remodeling spectrum[J]. Front Physiol, 2019, 10: 1021.
doi: 10.3389/fphys.2019.01021
URL
|
[3] |
Wang MQ, He JJ, Chen CS, et al. A preliminary anatomical study on the association of condylar and occlusal asymmetry[J]. Cranio, 2011, 29(2):111-116.
doi: 10.1179/crn.2011.019
URL
|
[4] |
Sun K, Liu F, Wang J, et al. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes[J]. In Vitro Cell Dev Biol Anim, 2017, 53(2):141-148.
doi: 10.1007/s11626-016-0090-5
pmid: 27605110
|
[5] |
Ransom RC, Carter AC, Salhotra A, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration[J]. Nature, 2018, 563(7732):514-521.
doi: 10.1038/s41586-018-0650-9
|
[6] |
Liu Q, Yang HX, Duan J, et al. Bilateral anterior elevation prosthesis boosts chondrocytes proliferation in mice mandibular condyle[J]. Oral Dis, 2019, 25(6):1589-1599.
doi: 10.1111/odi.13128
pmid: 31132303
|
[7] |
Lu L, Zhang X, Zhang M, et al. RANTES and SDF-1 are keys in cell-based therapy of TMJ osteoarthritis[J]. J Dent Res, 2015, 94(11):1601-1609.
doi: 10.1177/0022034515604621
pmid: 26377571
|
[8] |
Zhang M, Yang H, Lu L, et al. Matrix replenishing by BMSCs is beneficial for osteoarthritic temporomandibular joint cartilage[J]. Osteoarthr Cartil, 2017, 25(9):1551-1562.
doi: 10.1016/j.joca.2017.05.007
URL
|
[9] |
Cheng B, Zhao S, Luo J, et al. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells[J]. J Bone Miner Res, 2001, 16(2):249-259.
pmid: 11204425
|
[10] |
Jiang JX, Cherian PP. Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain[J]. Cell Commun Adhes, 2003, 10(4-6):259-264.
pmid: 14681026
|
[11] |
Zhang J, Zhang HY, Zhang M, et al. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage[J]. Osteoarthr Cartil, 2014, 22(6):822-830.
doi: 10.1016/j.joca.2014.03.017
URL
|
[12] |
Chang W, Tu C, Chen TH, et al. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development[J]. Sci Signal, 2008, 1(35):ra1.
|
[13] |
Zhang M, Yang H, Wan X, et al. Prevention of injury-induced osteoarthritis in rodent temporomandibular joint by targeting chondrocyte CaSR[J]. J Bone Miner Res, 2019, 34(4):726-738.
doi: 10.1002/jbmr.3643
pmid: 30496623
|
[14] |
Yang H, Zhang M, Liu Q, et al. Inhibition of ihh reverses temporomandibular joint osteoarthritis via a PTH1R signaling dependent mechanism[J]. Int J Mol Sci, 2019, 20(15):E3797.
|
[15] |
Yang H, Wen Y, Zhang M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020, 16(2):271-288.
doi: 10.1080/15548627.2019.1606647
pmid: 31007149
|
[16] |
Zhang M, Wang H, Zhang J, et al. Unilateral anterior crossbite induces aberrant mineral deposition in degenerative temporomandibular cartilage in rats[J]. Osteoarthr Cartil, 2016, 24(5):921-931.
doi: 10.1016/j.joca.2015.12.009
URL
|
[17] |
Ferrone C, Andracco R, Cimmino MA. Calcium pyrophosphate deposition disease: clinical manifestations[J]. Reumatismo, 2012, 63(4):246-252.
doi: 10.4081/reumatismo.2011.246
pmid: 22303531
|
[18] |
Tsui FW. Genetics and mechanisms of crystal deposition in calcium pyrophosphate deposition disease[J]. Curr Rheumatol Rep, 2012, 14(2):155-160.
doi: 10.1007/s11926-011-0230-6
pmid: 22198832
|
[19] |
Narisawa S, Yadav MC, Millán JL. In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin[J]. J Bone Miner Res, 2013, 28(7):1587-1598.
doi: 10.1002/jbmr.1901
pmid: 23427088
|
[20] |
Johnson K, Terkeltaub R. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess[J]. Osteoarthr Cartil, 2004, 12(4):321-335.
doi: 10.1016/j.joca.2003.12.004
URL
|
[21] |
Terkeltaub R. Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification[J]. Purinergic Signal, 2006, 2(2):371-377.
doi: 10.1007/s11302-005-5304-3
URL
|
[22] |
Hong D, Zaky SH, Chong R, et al. Controlling magnesium corrosion and degradation-regulating mineralization using matrix GLA protein[J]. Acta Biomater, 2019, 98: 142-151.
doi: S1742-7061(19)30375-7
pmid: 31330328
|
[23] |
Yang T, Zhang J, Cao Y, et al. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling[J]. J Dent Res, 2015, 94(6):803-812.
doi: 10.1177/0022034515576051
pmid: 25749876
|
[24] |
Zhang J, Liao L, Zhu J, et al. Osteochondral interface stiffening in mandibular condylar osteoarthritis[J]. J Dent Res, 2018, 97(5):563-570.
doi: 10.1177/0022034517748562
pmid: 29298566
|
[25] |
Oegema TR Jr, Johnson SL, Aguiar DJ, et al. Fibronectin and its fragments increase with degeneration in the human intervertebral disc[J]. Spine (Phila Pa 1976), 2000, 25(21):2742-2747.
doi: 10.1097/00007632-200011010-00005
URL
|
[26] |
Xia M, Zhu Y. Fibronectin fragment activation of ERK increasing integrin α5 and β1 subunit expression to degenerate nucleus pulposus cells[J]. J Orthop Res, 2011, 29(4):556-561.
doi: 10.1002/jor.v29.4
URL
|
[27] |
Hwang HS, Lee MH, Choi MH, et al. NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes[J]. BMB Rep, 2019, 52(6):373-378.
pmid: 30760380
|
[28] |
Zhang HY, Xie MJ, Yang HX, et al. Catabolic changes of rat temporomandibular joint discs induced by unilateral anterior crossbite[J]. J Oral Rehabil, 2019, 46(4):340-348.
doi: 10.1111/joor.2019.46.issue-4
URL
|
[29] |
Wang MQ, Cao HT, Ge YL, et al. Magnetic resonance imaging on TMJ disc thickness in TMD patients: a pilot study[J]. J Prosthet Dent, 2009, 102(2):89-93.
doi: 10.1016/S0022-3913(09)60116-5
pmid: 19643222
|
[30] |
Sun L, Wang MQ, He JJ, et al. Experimentally created nonbalanced occlusion effects on the thickness of the temporomandibular joint disc in rats[J]. Angle Orthod, 2009, 79(1):51-53.
doi: 10.2319/091907-450.1
pmid: 19123706
|
[31] |
Lautenschlager S, Gill PG, Luo ZX, et al. The role of miniaturization in the evolution of the mammalian jaw and middle ear[J]. Nature, 2018, 561(7724):533-537.
doi: 10.1038/s41586-018-0521-4
|
[32] |
Rodrigues AF, Fraga MR, Vitral RW. Computed tomography evaluation of the temporomandibular joint in Class I malocclusion patients: condylar symmetry and condyle-fossa relationship[J]. Am J Orthod Dentofacial Orthop, 2009, 136(2):192-198.
doi: 10.1016/j.ajodo.2007.07.032
URL
|