[1] Rawlinson SC, Boyde A, Davis GR, et al. hypofunction: their effects on rat mandibular bone[J]. J Dent Res, 2009, 88(7):615-620.
[2] Kingsmill VJ, Boyde A, Davis GR, et al. Changes in bone mineral and matrix in response to a soft diet[J]. J Dent Res, 2010, 89(5):510-514.
[3] Ejiri S, Toyooka E, Tanaka M, et al. Histological and histomorphometrical changes in rat alveolar bone following antagonistic tooth extraction and/or ovariectomy[J]. Arch Oral Biol, 2006, 51 (11):941-950.
[4] van der Bilt A. Assessment of mastication with implications for oral rehabilitation: a review[J]. J Oral Rehabil, 2011, 38(10):754-780.
[5] van der Bilt A, Engelen L, Pereira LJ, et al. Oral physiology and mastication[J]. Physiol Behav, 2006, 89(1):22-27.
[6] Mavropoulos A, Kiliaridis S, Rizzoli R, et al. Normal masticatory function partially protects the rat mandibular bone from estrogen-deficiency induced osteoporosis[J]. J Biomech, 2014, 47(11):2666-2671.
[7] Odman A, Mavropoulos A, Kiliaridis S. Do masticatory functional changes influence the mandibular morphology in adult rats[J]. Arch Oral Biol, 2008, 53(12):1149-1154.
[8] Luca L, Roberto D, Francesca SM, et al. Consistency of diet and its effects on mandibular morphogenesis in the young rat[J]. Prog Orthod, 2003, 4:3-7.
[9] Kohyama K, Hatakeyama E, Sasaki T, et al. Effects of sample hardness on human chewing force: a model study using silicone rubber[J]. Arch Oral Biol, 2004, 49(10):805-816.
[10] Grunheid T, Langenbach GE, Brugman P, et al. The masticatory system under varying functional load. Part 2: effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible[J]. Eur J Orthod, 2011, 33(4):365-371.
[11] Papachristou D, Pirttiniemi P, Kantomaa T, et al. Fos-and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes[J]. Eur J Orthod, 2006, 28(1):20-26.
[12] Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts[J]. Arch Biochem Biophys, 2014, 561:22-28.
[13] Liu Z, Yan C, Kang C, et al. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats[J]. PLoS One, 2015, 10(1):e0116194.
[14] Groning F, Fagan MJ, O'Higgins P. The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics[J]. J Biomech, 2011, 44(7):1304-1312.
[15] Hichijo N, Tanaka E, Kawai N, et al. Effects of decreased occlusal loading during growth on the mandibular bone characteristics[J]. PLoS One, 2015, 10(6):e0129290.
[16] Isaacson J, Brotto M. Physiology of mechanotransduction: how do muscle and bone "talk" to one another[J]? Clin Rev Bone Miner Metab, 2014, 12(2):77-85.
[17] Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects[J]. Endocrine, 2014, 45(2):165-177.
[18] Shimizu Y, Ishida T, Hosomichi J, et al. Soft diet causes greater alveolar osteopenia in the mandible than in the maxilla[J]. Arch Oral Biol, 2013, 58(8):907-911.
[19] Mavropoulos A, Odman A, Ammann P, et al. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats[J]. Bone, 2010, 47(3):687-692.
[20] Mavropoulos A, Bresin A, Kiliaridis S. Morphometric analysis of the mandible in growing rats with different masticatory functional demands: adaptation to an upper posterior bite block[J]. Eur J Oral Sci, 2004, 112(3):259-266.
[21] Divieti Pajevic P. Recent progress in osteocyte research[J]. Endocrinol Metab (Seoul), 2013, 28(4):255-261.
[22] Bresin A, Kiliaridis S, Strid KG. Effect of masticatory function on the internal bone structure in the mandible of the growing rat[J]. Eur J Oral Sci, 1999, 107(1):35-44.
[23] Tanaka E, Sano R, Kawai N, et al. Effect of food consistency on the degree of mineralization in the rat mandible[J]. Ann Biomed Eng, 2007, 35(9):1617-1621. |