[1] |
Mavragani CP, Moutsopoulos HM. Sjögren′s syndrome[J]. Annu Rev Pathol Mech Dis, 2014, 9: 273-285.
doi: 10.1146/pathmechdis.2014.9.issue-1
URL
|
[2] |
Fox RI. Sjögren′s syndrome[J]. Lancet, 2005, 366(9482): 321-331.
doi: 10.1016/S0140-6736(05)66990-5
URL
|
[3] |
Tang YJ, Zhou T, Yu X, et al. The role of long non-coding RNAs in rheumatic diseases[J]. Nat Rev Rheumatol, 2017, 13(11): 657-669.
doi: 10.1038/nrrheum.2017.162
pmid: 28978995
|
[4] |
Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren′s syndrome[J]. Nat Rev Rheumatol, 2013, 9(9): 544-556.
doi: 10.1038/nrrheum.2013.110
pmid: 23857130
|
[5] |
Singh N, Cohen PL. The T cell in Sjögren′s syndrome: Force majeure, not spectateur[J]. J Autoimmun, 2012, 39(3): 229-233.
doi: 10.1016/j.jaut.2012.05.019
URL
|
[6] |
Zhu JF, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations(*)[J]. Annu Rev Immunol, 2010, 28: 445-489.
doi: 10.1146/immunol.2010.28.issue-1
URL
|
[7] |
da Silva TA, Oliveira-Brito PKM, Gonçalves TE, et al. ArtinM mediates murine T cell activation and induces cell death in Jurkat human leukemic T cells[J]. Int J Mol Sci, 2017, 18(7): E1400.
|
[8] |
Roescher N, Tak PP, Illei GG. Cytokines in Sjögren′s syndrome: Potential therapeutic targets[J]. Ann Rheum Dis, 2010, 69(6): 945-948.
doi: 10.1136/ard.2009.115378
pmid: 20410069
|
[9] |
Yin YM, Choi SC, Xu ZW, et al. Normalization of CD4+ T cell metabolism reverses lupus[J]. Sci Transl Med, 2015, 7(274): 274ra18.
|
[10] |
Chisholm DM, Waterhouse JP, Mason DK. Lymphocytic sialadenitis in the major and minor glands: A correlation in postmortem subjects[J]. J Clin Pathol, 1970, 23(8): 690-694.
pmid: 5488040
|
[11] |
Gu F, Xu SX, Zhang PY, et al. CP-25 alleviates experimental Sjögren′s syndrome features in NOD/ltj mice and modulates T lymphocyte subsets[J]. Basic Clin Pharmacol Toxicol, 2018, 123(4): 423-434.
doi: 10.1111/bcpt.2018.123.issue-4
URL
|
[12] |
National Research Council. Guide for the care and use of laboratory animals[M]. 8th edition. Washington, D.C.: The National Academies Press, 2011.
|
[13] |
Sharabi A, Tsokos GC. T cell metabolism: New insights in systemic lupus erythematosus pathogenesis and therapy[J]. Nat Rev Rheumatol, 2020, 16(2): 100-112.
doi: 10.1038/s41584-019-0356-x
pmid: 31949287
|
[14] |
Blagih J, Coulombe F, Vincent EE, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo[J]. Immunity, 2015, 42(1): 41-54.
doi: 10.1016/j.immuni.2014.12.030
pmid: 25607458
|
[15] |
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186(6): 3299-3303.
doi: 10.4049/jimmunol.1003613
pmid: 21317389
|
[16] |
Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity[J]. Int Rev Immunol, 2015, 34(1): 3-18.
doi: 10.3109/08830185.2014.974748
pmid: 25398050
|
[17] |
Jacobs SR, Herman CE, MacIver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways[J]. J Immunol, 2008, 180(7): 4476-4486.
doi: 10.4049/jimmunol.180.7.4476
pmid: 18354169
|
[18] |
Wang RN, Green DR. Metabolic checkpoints in activated T cells[J]. Nat Immunol, 2012, 13(10): 907-915.
doi: 10.1038/ni.2386
pmid: 22990888
|
[19] |
Kono M, Yoshida N, Maeda K, et al. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus-like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis[J]. Arthritis Rheumatol, 2019, 71(11): 1869-1878.
doi: 10.1002/art.v71.11
URL
|
[20] |
Li W, Qu GL, Choi SC, et al. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters[J]. Front Immunol, 2019, 10: 833.
doi: 10.3389/fimmu.2019.00833
pmid: 31057554
|
[21] |
Garcia-Carbonell R, Divakaruni AS, Lodi A, et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes[J]. Arthritis Rheumatol, 2016, 68(7): 1614-1626.
doi: 10.1002/art.v68.7
URL
|
[22] |
Onuora S. Rheumatoid arthritis: Could glucose metabolism be a sweet target for RA therapy?[J]. Nat Rev Rheumatol, 2016, 12(3): 131.
doi: 10.1038/nrrheum.2016.20
pmid: 26888555
|
[23] |
Koga T, Sato T, Furukawa K, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(5): 766-772.
doi: 10.1002/art.2019.71.issue-5
URL
|
[24] |
Damasceno LEA, Prado DS, Veras FP, et al. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation[J]. J Exp Med, 2020, 217(10): e20190613.
doi: 10.1084/jem.20190613
URL
|
[25] |
Marsh J, Mukherjee P, Seyfried TN. Drug/diet synergy for managing malignant astrocytoma in mice: 2-deoxy-D-glucose and the restricted ketogenic diet[J]. Nutr Metab (Lond), 2008, 5: 33.
doi: 10.1186/1743-7075-5-33
|
[26] |
Pajak B, Siwiak E, Sjögren′s M, et al. 2-deoxy-d-glucose and its analogs: From diagnostic to therapeutic agents[J]. Int J Mol Sci, 2019, 21(1): E234.
|