[1] Okamoto A, Chikamatsu K, Sakakura K, et al. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck[J]. Oral Oncol, 2009,45(7):633-639.
[2] Chen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer[J]. Biochem Biophys Res Commun, 2009,385(3):307-313.
[3] Lee MH, Cho YS, Han YM. Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation[J]. Stem Cells, 2007,25(7):1654-1663.
[4] An Y, Kiang A, Lopez JP, et al. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population[J]. PLoS One, 2012,7(11):e47919.
[5] Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL[J]. Nature, 2003,425(6955):307-311.
[6] Nakai E, Park K, Yawata T, et al. Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma[J]. Cancer Invest, 2009,27(9):901-908.
[7] Zhang P, Zhang Y, Mao L, et al. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes[J]. Cancer Lett, 2009,277(2):227-234.
[8] Chua C, Zaiden N, Chong KH, et al. Characterization of a side population of astrocytoma cells in response to temozolomide[J]. J Neurosurg, 2008,109(5):856-866.
[9] La Porta CA. Drug resistance in melanoma: new perspectives[J]. Curr Med Chem, 2007,14(4):387-391.
[10] Honoki K, Fujii H, Kubo A, et al. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance[J]. Oncol Rep, 2010,24(2):501-505.
[11] Wang YC, Yo YT, Lee HY, et al. ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome[J]. Am J Pathol, 2012,180(3):1159-1169.
[12] Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells[J]. Breast Cancer Res Treat, 2012,133(1):75-87.
[13] Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell, 2007,1(5):555-567.
[14] Cheng L, Wu Q, Huang Z, et al. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1[J]. EMBO J, 2011,30(5):800-813.
[15] Okuyama R, Nguyen BC, Talora C, et al. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism[J]. Dev Cell, 2004,6(4):551-562.
[16] Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin[J]. Nat Genet, 2003,33(3):416-421.
[17] Hu YY, Zheng MH, Cheng G, et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells[J]. BMC Cancer, 2011,11:82.
[18] Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity[J]. Curr Biol, 2007,17(2):165-172.
[19] Ehtesham M, Sarangi A, Valadez JG, et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells[J]. Oncogene, 2007,26(39):5752-5761.
[20] Cui D, Xu Q, Wang K, et al. Gli1 is a potential target for alleviating multidrug resistance of gliomas[J]. J Neurol Sci, 2010,288(1-2):156-166.
[21] Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma[J]. Stem Cells, 2007,25(10):2524-2533.
[22] Mazzoleni S, Politi LS, Pala M, et al. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis[J]. Cancer Res, 2010,70(19):7500-7513.
[23] Inda MM, Bonavia R, Mukasa A, et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma[J]. Genes Dev, 2010,24(16):1731-1745.
[24] Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer[J]. Nat Rev Cancer, 2004,4(11):839-849.
[25] Madjd Z, Mehrjerdi AZ, Sharifi AM, et al. CD44+ cancer cells express higher levels of the anti-apoptotic protein Bcl-2 in breast tumours[J]. Cancer Immun, 2009,9:4.
[26] Eisele L, Klein-Hitpass L, Chatzimanolis N, et al. Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia[J]. Acta Haematol, 2007,117(1):8-15.
[27] Ma S, Lee TK, Zheng BJ, et al. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway[J]. Oncogene, 2008,27(12):1749-1758.
[28] Wang SJ, Bourguignon LY. Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer[J]. Arch Otolaryngol Head Neck Surg, 2006,132(7):771-778.
[29] Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance[J]. Clin Cancer Res, 2008,14(9):2519-2526.
[30] Akiyama K, Ohga N, Hida Y, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment[J]. Am J Pathol, 2012,180(3):1283-1293.
[31] Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005,122(6):947-956.
[32] Ye F, Zhou C, Cheng Q, et al. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells[J]. BMC Cancer, 2008,8:108.
[33] Hoei-Hansen CE, Almstrup K, Nielsen JE, et al. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours[J]. Histopathology, 2005,47(1):48-56.
[34] Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma[J]. Clin Cancer Res, 2008,14(13):4085-4095.
[35] Ezeh UI, Turek PJ, Reijo RA, et al. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma[J]. Cancer, 2005,104(10):2255-2265.
[36] Jeter CR, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development[J]. Stem Cells, 2009,27(5):993-1005.
[37] Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation[J]. Oncogene, 2012,31(47):4898-4911.
[38] Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma[J]. J Biol Chem, 2012,287(39):32800-32824.
[39] Hovinga KE, Shimizu F, Wang R, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate[J]. Stem Cells, 2010, 28(6):1019-1029.
[40] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
[41] Lavon I, Zrihan D, Granit A, et al. Gliomas display amicroRNA expression profile reminiscent of neural precursor cells[J]. Neuro Oncol, 2010,12(5):422-433.
[42] Xu CX, Xu M, Tan L, et al. MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog[J]. J Biol Chem, 2012,287(42):34970-34978.
[43] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev Cancer, 2009,9(3):153-166.
[44] Han YK, Lee JH, Park GY, et al. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy[J]. Biochem Biophys Res Commun, 2013,430(4):1329-1333.
[45] Zhou J, Zhang Y. Cancer stem cells: Models, mechanisms and implications for improved treatment[J]. Cell Cycle, 2008,7(10):1360-1370.
[46] Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells[J]. Nature, 2008,453(7198):1072-1078. |