[1] |
Lyu R, Zhou J. The multifaceted roles of primary cilia in the regulation of stem cell properties and functions[J]. J Cell Physiol, 2017, 232(5): 935-938.
doi: 10.1002/jcp.25683
pmid: 27861880
|
[2] |
Hampl M, Cela P, Szabo-Rogers HL, et al. Role of primary cilia in odontogenesis[J]. J Dent Res, 2017, 96(9): 965-974.
doi: 10.1177/0022034517713688
pmid: 28605602
|
[3] |
Novarino G, Akizu N, Gleeson JG. Modeling human disease in humans: The ciliopathies[J]. Cell, 2011, 147(1): 70-79.
doi: 10.1016/j.cell.2011.09.014
pmid: 21962508
|
[4] |
Huber C, Cormier-Daire V. Ciliary disorder of the skeleton[J]. Am J Med Genet C Semin Med Genet, 2012, 160C(3): 165-174.
doi: 10.1002/ajmg.c.v160c.3
URL
|
[5] |
Hoey DA, Tormey S, Ramcharan S, et al. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells[J]. Stem Cells, 2012, 30(11): 2561-2570.
doi: 10.1002/stem.1235
pmid: 22969057
|
[6] |
Yuan X, Cao J, He XN, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation[J]. Nat Commun, 2016, 7: 11024.
doi: 10.1038/ncomms11024
pmid: 26996322
|
[7] |
Yuan X, Yang SY. Deletion of IFT80 impairs epiphyseal and articular cartilage formation due to disruption of chondrocyte differentiation[J]. PLoS One, 2015, 10(6): e0130618.
|
[8] |
Morris SA. Single-cell RNA-seq steps up to the growth plate[J]. Trends Biotechnol, 2016, 34(7): 525-527.
doi: S0167-7799(16)30053-1
pmid: 27260936
|
[9] |
Rais Y, Reich A, Simsa-Maziel S, et al. The growth plate's response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium[J]. Cell Mol Life Sci, 2015, 72(3): 597-615.
doi: 10.1007/s00018-014-1690-4
pmid: 25084815
|
[10] |
Mizuhashi K, Nagata M, Matsushita Y, et al. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells[J]. J Bone Miner Res, 2019, 34(8): 1387-1392.
doi: 10.1002/jbmr.3719
pmid: 30888720
|
[11] |
Papaioannou G, Petit ET, Liu ES, et al. Raf kinases are essential for phosphate induction of ERK1/2 phosphorylation in hypertrophic chondrocytes and normal endochondral bone development[J]. J Biol Chem, 2017, 292(8): 3164-3171.
doi: 10.1074/jbc.M116.763342
pmid: 28073913
|
[12] |
Song BE, Haycraft CJ, Seo HS, et al. Development of the post-natal growth plate requires intraflagellar transport proteins[J]. Dev Biol, 2007, 305(1): 202-216.
doi: 10.1016/j.ydbio.2007.02.003
pmid: 17359961
|
[13] |
Kobayashi T, Soegiarto DW, Yang YZ, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP[J]. J Clin Invest, 2005, 115(7): 1734-1742.
pmid: 15951842
|
[14] |
Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018, 563(7730): 254-258.
doi: 10.1038/s41586-018-0662-5
|
[15] |
St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J]. Genes Dev, 1999, 13(16): 2072-2086.
|
[16] |
Horowitz MC, Tommasini SM. Fat and bone: PGC-1α regulates mesenchymal cell fate during aging and osteoporosis[J]. Cell Stem Cell, 2018, 23(2): 151-153.
doi: S1934-5909(18)30346-1
pmid: 30075123
|
[17] |
Sasai N, Briscoe J. Primary cilia and graded sonic hedgehog signaling[J]. Wiley Interdiscip Rev Dev Biol, 2012, 1(5): 753-772.
doi: 10.1002/wdev.v1.5
URL
|
[18] |
Jenkins D. Hedgehog signalling: Emerging evidence for non-canonical pathways[J]. Cell Signal, 2009, 21(7): 1023-1034.
doi: 10.1016/j.cellsig.2009.01.033
pmid: 19399989
|
[19] |
He M, Agbu S, Anderson KV. Microtubule motors drive hedgehog signaling in primary Cilia[J]. Trends Cell Biol, 2017, 27(2): 110-125.
doi: S0962-8924(16)30152-0
pmid: 27765513
|
[20] |
Kronenberg HM. Developmental regulation of the growth plate[J]. Nature, 2003, 423(6937): 332-336.
doi: 10.1038/nature01657
URL
|