[1] |
Farr JN, Khosla S. Skeletal changes through the lifespan—from growth to senescence[J]. Nat Rev Endocrinol, 2015, 11(9): 513-521.
|
[2] |
Wang WH, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review[J]. Bioact Mater, 2017, 2(4): 224-247.
|
[3] |
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272.
|
[4] |
Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells[J]. Science, 1988, 241(4861): 58-62.
doi: 10.1126/science.2898810
pmid: 2898810
|
[5] |
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes[J]. Nature, 2018, 553(7689): 418-426.
|
[6] |
Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation, 1968, 6(2): 230-247.
pmid: 5654088
|
[7] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905
pmid: 16923606
|
[8] |
Bianco P, Robey PG. Skeletal stem cells[J]. Development, 2015, 142(6): 1023-1027.
doi: 10.1242/dev.102210
pmid: 25758217
|
[9] |
Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: Revisiting history, concepts, and assays[J]. Cell Stem Cell, 2008, 2(4): 313-319.
doi: 10.1016/j.stem.2008.03.002
pmid: 18397751
|
[10] |
Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine[J]. Nat Med, 2013, 19(1): 35-42.
doi: 10.1038/nm.3028
pmid: 23296015
|
[11] |
Chan CKF, Seo EY, Chen JY, et al. Identification and specification of the mouse skeletal stem cell[J]. Cell, 2015, 160(1-2): 285-298.
doi: 10.1016/j.cell.2014.12.002
pmid: 25594184
|
[12] |
Chan CKF, Gulati GS, Sinha R, et al. Identification of the human skeletal stem cell[J]. Cell, 2018, 175(1): 43-56.e21.
doi: S0092-8674(18)30956-5
pmid: 30241615
|
[13] |
Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2): 154-168.
doi: 10.1016/j.stem.2014.06.008
pmid: 24953181
|
[14] |
Shu HS, Liu YL, Tang XT, et al. Tracing the skeletal progenitor transition during postnatal bone formation[J]. Cell Stem Cell, 2021, 28(12): 2122-2136.e3.
doi: 10.1016/j.stem.2021.08.010
pmid: 34499868
|
[15] |
Shi Y, He GX, Lee WC, et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017, 8(1): 2043.
doi: 10.1038/s41467-017-02171-2
pmid: 29230039
|
[16] |
Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018, 563(7730): 254-258.
|
[17] |
Newton PT, Li L, Zhou BY, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate[J]. Nature, 2019, 567(7747): 234-238.
|
[18] |
Costa AG, Cusano NE, Silva BC, et al. Cathepsin K: Its skeletal actions and role as a therapeutic target in osteoporosis[J]. Nat Rev Rheumatol, 2011, 7(8): 447-456.
doi: 10.1038/nrrheum.2011.77
pmid: 21670768
|
[19] |
Yang WT, Wang JG, Moore DC, et al. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling[J]. Nature, 2013, 499(7459): 491-495.
|
[20] |
Debnath S, Yallowitz AR, McCormick J, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation[J]. Nature, 2018, 562(7725): 133-139.
|
[21] |
Ortinau LC, Wang H, Lei K, et al. Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells[J]. Cell Stem Cell, 2019, 25(6): 784-796.e5.
doi: S1934-5909(19)30458-8
pmid: 31809737
|
[22] |
Martin JF, Olson EN. Identification of a prx1 limb enhancer[J]. Genesis, 2000, 26(4): 225-229.
pmid: 10748458
|
[23] |
Wilk K, Yeh SA, Mortensen LJ, et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration[J]. Stem Cell Rep, 2017, 8(4): 933-946.
|
[24] |
Zhao H, Feng JF, Ho TV, et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015, 17(4): 386-396.
doi: 10.1038/ncb3139
pmid: 25799059
|
[25] |
Yu HI, Jerchow B, Sheu TJ, et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis[J]. Development, 2005, 132(8): 1995-2005.
|
[26] |
Maruyama T, Jeong J, Sheu TJ, et al. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration[J]. Nat Commun, 2016, 7: 10526.
doi: 10.1038/ncomms10526
pmid: 26830436
|
[27] |
Li QW, Xu RS, Lei KX, et al. Insights into skeletal stem cells[J]. Bone Res, 2022, 10(1): 61.
doi: 10.1038/s41413-022-00235-8
pmid: 36261411
|