[1] 宁浩然, 苏俭生. 水凝胶仿生构建干细胞微环境应用于骨组织修复 [J]. 口腔颌面外科杂志, 2017, 27(6): 428-433.
[2] 陈希, 任春霞, 刘莉莉, 等. 载他克莫司可注射温敏型水凝胶促牙周组织再生的研究 [J]. 口腔颌面外科杂志, 2020, 30(5): 272-278.
[3] Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation[J]. J Biomech, 2010, 43(1): 55-62.
[4] Zheng JK, Jung S, Schmidt PW, et al. 2-hydroxyethylcellulose and amphiphilic block polymer conjugates form mechanically tunable and nonswellable hydrogels[J]. ACS Macro Lett, 2017, 6(2): 145-149.
[5] Spicer CD. Hydrogel scaffolds for tissue engineering: The importance of polymer choice[J]. Polym Chem, 2020, 11(2): 184-219.
[6] Bencherif SA, Braschler TM, Renaud P. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry[J]. J Periodontal Implant Sci, 2013, 43(6): 251-261.
[7] Abbasi N, Hamlet S, Love RM, et al. Porous scaffolds for bone regeneration[J]. J Sci Adv Mater Devices, 2020, 5(1): 1-9.
[8] Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives[J]. Appl Mater Today, 2020, 18: 100479.
[9] Jiang L, Wang YJ, Liu ZQ, et al. Three-dimensional printing and injectable conductive hydrogels for tissue engineering application[J]. Tissue Eng Part B Rev, 2019, 25(5): 398-411.
[10] Majidi SS, Slemming-Adamsen P, Hanif M, et al. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture[J]. Int J Biol Macromol, 2018, 118(Pt B): 1648-1654.
[11] Xie J, Shen HQ, Yuan GY, et al. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111787.
[12] Fang J, Zhang L, Sutton D, et al. Needleless melt-electrospinning of polypropylene nanofibres[J]. J Nanomater, 2012, 2012(1): 382639.
[13] Liu TT, Zhang YZ, Sun MY, et al. Effect of freezing process on the microstructure of gelatin methacryloyl hydrogels[J]. Front Bioeng Biotechnol, 2021, 9: 810155.
[14] Dušková-Smrčková M, Zavřel J, Bartoš M, et al. Communicating macropores in PHEMA-based hydrogels for cell seeding: Probabilistic open pore simulation and direct micro-CT proof[J]. Mater Des, 2021, 198: 109312.
[15] Flégeau K, Pace R, Gautier H, et al. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine[J]. Adv Colloid Interface Sci, 2017, 247: 589-609.
[16] 王桂芳, 吕凯歌. 镁离子激活自噬促进大鼠骨髓间充质干细胞成骨分化的体外实验观察 [J]. 口腔颌面外科杂志, 2021, 31(4): 212-220.
[17] Griffin DR, Weaver WM, Scumpia PO, et al. Accelerated wound healing by injectable microporous gel scaffolds assembled fromannealed building blocks[J]. Nat Mater, 2015, 14(7): 737-744.
[18] Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors[J]. Am J Physiol Cell Physiol, 2015, 309(12): C775-C782.
[19] Jonitz A, Lochner K, Lindner T, et al. Oxygen consumption, acidification and migration capacity of human primary osteoblasts within a three-dimensional tantalum scaffold[J]. J Mater Sci Mater Med, 2011, 22(9): 2089-2095.
[20] Volkmer E, Drosse I, Otto S, et al. Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone[J]. Tissue Eng Part A, 2008, 14(8): 1331-1340.
[21] Amini AR, Adams DJ, Laurencin CT, et al. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration[J]. Tissue Eng Part A, 2012, 18(13-14): 1376-1388.
[22] Suhaimi H, Wang S, Thornton T, et al. On glucose diffusivity of tissue engineering membranes and scaffolds[J]. Chem Eng Sci, 2015, 126: 244-256.
[23] Zhang X, Li Y, He D, et al. An effective strategy for preparing macroporous and self-healing bioactive hydrogels for cell delivery and wound healing[J]. Chem Eng J, 2021, 425: 130677.
[24] Ma T, Li Y, Yang ST, et al. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development[J]. Biotechnol Bioeng, 2000, 70(6): 606-618.
[25] Lopes SV, Collins MN, Reis RL, et al. Vascularization approaches in tissue engineering: Recent developments on evaluation tests and modulation[J]. ACS Appl Bio Mater, 2021, 4(4): 2941-2956.
[26] Fu JY, Wiraja C, Muhammad HB, et al. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation[J]. Acta Biomater, 2017, 58: 225-237.
[27] Lu DH, Zeng ZW, Geng ZJ, et al. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization[J]. Biomed Mater, 2022, 17(2): 025006.
[28] Qazi TH, Tytgat L, Dubruel P, et al. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects[J]. ACS Biomater Sci Eng, 2019, 5(10): 5348-5358.
[29] Lin SC, Wang YW, Wertheim DF, et al. Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 653-664.
[30] Sun MT, O'Connor AJ, Milne I, et al. Development of macroporous chitosan scaffolds for eyelid tarsus tissue engineering[J]. Tissue Eng Regen Med, 2019, 16(6): 595-604.
|