[1] |
Leader B, Baca QJ, Golan DE. Protein therapeutics: A summary and pharmacological classification[J]. Nat Rev Drug Discov, 2008, 7(1): 21-39.
doi: 10.1038/nrd2399
pmid: 18097458
|
[2] |
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy[J]. Nat Rev Cancer, 2017, 17(2): 93-115.
doi: 10.1038/nrc.2016.138
pmid: 28127048
|
[3] |
Davidson SM, Jonas O, Keibler MA, et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors[J]. Nat Med, 2017, 23(2): 235-241.
doi: 10.1038/nm.4256
pmid: 28024083
|
[4] |
Zhu X, Wu J, Shan W, et al. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins[J]. Angew Chem Int Ed Engl, 2016, 55(10): 3309-3312.
doi: 10.1002/anie.v55.10
URL
|
[5] |
Fineman MS, Shen LZ, Taylor K, et al. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes[J]. Diabetes Metab Res Rev, 2004, 20(5): 411-417.
doi: 10.1002/dmrr.v20:5
URL
|
[6] |
Emadi F, Amini A, Gholami A, et al. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity[J]. Sci Rep, 2017, 7(1): 1-13.
doi: 10.1038/s41598-016-0028-x
|
[7] |
Yang HY, Jang MS, Li Y, et al. Multifunctional and redox-responsive self-assembled magnetic nanovectors for protein delivery and dual-modal imaging[J]. ACS Appl Mater Interfaces, 2017, 9(22): 19184-19192.
doi: 10.1021/acsami.7b03747
URL
|
[8] |
Yang YN, Wan JJ, Niu YT, et al. Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery[J]. Chem Mater, 2016, 28(24): 9008-9016.
doi: 10.1021/acs.chemmater.6b03896
URL
|
[9] |
Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles[J]. PNAS, 2016, 113(11): 2868-2873.
doi: 10.1073/pnas.1520244113
pmid: 26929348
|
[10] |
Wang X, Bodman A, Shi C, et al. Tunable lipidoid-telodendrimer hybrid nanoparticles for intracellular protein delivery in brain tumor treatment[J]. Small, 2016, 12(31): 4185-4192.
doi: 10.1002/smll.201601234
pmid: 27375237
|
[11] |
Kim WJ, Kim BS, Cho YD, et al. Fibroin particle-supported cationic lipid layers for highly efficient intracellular protein delivery[J]. Biomaterials, 2017, 122: 154-162.
doi: 10.1016/j.biomaterials.2017.01.019
URL
|
[12] |
Trofimov A, Ivanova A, Zyuzin M, et al. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives[J]. Pharmaceutics, 2018, 10(4): 167.
doi: 10.3390/pharmaceutics10040167
URL
|
[13] |
Jurczyk M, Nowak M. Nanostructured hydrogen storage materials synthesized by mechanical alloying[M]//Eftekhari, A. Nanostructured materials in electrochemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA, 2008:349-385.
|
[14] |
Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32(11): 2757-2774.
doi: 10.1016/j.biomaterials.2011.01.004
pmid: 21292319
|
[15] |
王生杰, 蔡庆伟, 杜明轩, 等. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(Z1): 229-241.
|
[16] |
何淑婷, 刘宝春. 纳米二氧化硅改性及其应用研究进展[J]. 材料研究与应用, 2016, 10(2): 71-74,80.
|
[17] |
Katiyar A, Pinto NG. Visualization of size-selective protein separations on spherical mesoporous silicates[J]. Small, 2006, 2(5): 644-648.
pmid: 17193102
|
[18] |
Kwon D, Cha BG, Cho Y, et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4[J]. Nano Lett, 2017, 17(5): 2747-2756.
doi: 10.1021/acs.nanolett.6b04130
pmid: 28422506
|
[19] |
漆超, 朱英杰, 吴进, 等. 磷酸钙纳米材料的制备、性能及应用[J]. 科技导报, 2015, 33(4): 111-119.
|
[20] |
Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates[M]. 18th ed. New York: Elsevier, 1994: 213-214.
|
[21] |
Huang B, Yuan Y, Ding S, et al. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2[J]. Acta Biomater, 2015, 27: 275-285.
doi: S1742-7061(15)30099-4
pmid: 26360594
|
[22] |
Zhang N, Gao TL, Wang Y, et al. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 158-165.
doi: 10.1016/j.msec.2014.10.014
URL
|
[23] |
Iafisco M, Palazzo B, Marchetti M, et al. Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals[J]. J Mater Chem, 2009, 19(44): 8385.
doi: 10.1039/b914379c
URL
|
[24] |
Dong X, Wang Q, Wu T, et al. Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface[J]. Biophys J, 2007, 93(3): 750-759.
doi: 10.1529/biophysj.106.103168
pmid: 17617550
|
[25] |
Roth R, Schoelkopf J, Huwyler J, et al. Functionalized calcium carbonate microparticles for the delivery of proteins[J]. Eur J Pharm Biopharm, 2018, 122: 96-103.
doi: S0939-6411(17)30725-7
pmid: 29054385
|
[26] |
Sukhorukov GB, Volodkin DV, Günther AM, et al. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds[J]. J Mater Chem, 2004, 14(14): 2073-2081.
doi: 10.1039/B402617A
URL
|
[27] |
Petrov AI, Volodkin DV, Sukhorukov GB. Protein-calcium carbonate coprecipitation: A tool for protein encapsulation[J]. Biotechnol Prog, 2005, 21(3): 918-925.
doi: 10.1021/(ISSN)1520-6033
URL
|
[28] |
Qiu PP, Ma B, Hung CT, et al. Spherical mesoporous materials from single to multilevel architectures[J]. Acc Chem Res, 2019, 52(10): 2928-2938.
doi: 10.1021/acs.accounts.9b00357
URL
|
[29] |
Tada S, Chowdhury EH, Cho CS, et al. pH-sensitive carbonate apatite as an intracellular protein transporter[J]. Biomaterials, 2010, 31(6): 1453-1459.
doi: 10.1016/j.biomaterials.2009.10.016
pmid: 19854503
|
[30] |
Maruyama K, Yoshino T, Kagi H. Synthesizing a composite material of amorphous calcium carbonate and aspartic acid[J]. Mater Lett, 2011, 65(2): 179-181.
doi: 10.1016/j.matlet.2010.09.039
URL
|