《口腔颌面外科杂志》 ›› 2022, Vol. 32 ›› Issue (6): 343-353. doi: 10.3969/j.issn.1005-4979.2022.06.003

• 基础研究 • 上一篇    下一篇

基于自噬相关基因建立和验证口腔鳞状细胞癌的预后风险评分模型

齐延旭(), 马川, 朱勇, 黄晟栋, 赵华强, 张风河()   

  1. 山东大学齐鲁医学院口腔医学院,口腔医院口腔颌面外科,山东省口腔组织再生重点实验室,山东省口腔生物材料与组织再生工程实验室,山东 济南 250012
  • 收稿日期:2022-01-14 修回日期:2022-05-08 出版日期:2022-12-28 发布日期:2022-12-30
  • 通讯作者: 张风河,教授. E-mail: zfengh@sdu.edu.cn
  • 作者简介:

    齐延旭(1996—),男,医师,硕士. E-mail:

  • 基金资助:
    山东省自然科学基金(ZR2020MH190); 山东省自然科学基金(ZR2021MH086)

Construction and validation of prognostic risk score model for OSCC based on autophagy-related genes

QI Yanxu(), MA Chuan, ZHU Yong, HUANG Shengdong, ZHAO Huaqiang, ZHANG Fenghe()   

  1. Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology,Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong Province, China
  • Received:2022-01-14 Revised:2022-05-08 Online:2022-12-28 Published:2022-12-30

摘要:

目的: 构建自噬相关基因(autophagy-related genes,ARGs)的预后风险评分模型,预测口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)的生存率。方法: 从癌症基因组图谱(the cancer genome atlas,TCGA)数据库中检索差异表达的ARGs,通过 Cox 回归分析及套索(the least absolute shrinkage and selection operator, LASSO)回归分析确定预后的ARGs,构建总生存期(overall survival, OS)风险评分模型。根据中位风险评分将TCGA数据库和基因表达汇编(gene expression omnibu,GEO)数据库中所有病例归类为低风险组和高风险组,使用Kaplan-Meier(K-M)法分析高、低风险组的OS,通过描述高、低风险组患者风险评分分布、生存状态分布和基因表达模式论证风险评分模型的准确性。构建列线图定量估计OSCC 患者的生存率。通过免疫细胞浸润差异分析探讨该模型预测OSCC预后的潜在机制。结果: 筛选出37个差异表达的ARGs,构建了由6个预后ARGs(BID、DDIT3、VEGFA、FADD、BIRC5和NKX2-3)组成的OSCC预后风险评分模型,该模型可作为OSCC潜在的独立预后因素。构建了列线图预测患者OS,校准曲线以图形方式验证了实际生存率与列线图预测的生存率之间的一致性。结论: 本研究构建的风险评分模型和列线图可以为预测OSCC患者预后提供参考,并且这有助于理解自噬影响OSCC发生、发展的机制。

关键词: 口腔鳞状细胞癌, 自噬, 预后, 风险评分, 列线图

Abstract:

Objective: The research focused on constructing the prognostic risk score model of autophagy-related genes(ARGs) and predicting survival rate of oral squamous cell carcinoma(OSCC). Methods: Differentially expressed ARGs were retrieved from the cancer genome atlas(TCGA) database. Prognostic ARGs were identified through Cox regression and the least absolute shrinkage and selection operator(LASSO) regression analysis to construct the overall survival(OS) risk score model. Next, all cases in TCGA and gene expression omnibu (GEO) datasets were classified into low-risk or high-risk groups based on the median risk score. Kaplan-Meier(K-M) method was used to analyze the OS of high- and low-risk groups. In addition, the risk distribution, survival status and gene expression patterns were analyzed to demonstrate the accuracy of the risk score model. A nomogram was constructed to quantitatively estimate the survival rate of OSCC patients. Finally, differential immune cell infiltration analysis was conducted to explore the potential mechanism of the model predicting the prognosis of OSCC. Results: A total of 37 differentially expressed ARGs were screened out. 6 ARGs (BID、DDIT3、VEGFA、FADD、BIRC5、NKX2-3) were used to construct a prognostic risk score model of OSCC, which could be considered as a potentially independent prognostic factor of OSCC. The calibration curve from nomogram chart graphically verified the consistency between the actual and predicted survival rates. Conclusions: The authors suggest that the autophagy-related risk score model and the nomogram constructed in this study can provide a reference for predicting the prognosis of OSCC patients, which will be helpful to understand the underlying mechanism of autophagy participating the occurrence and development of OSCC.

Key words: oral squamous cell carcinoma, autophagy, prognosis, risk score, nomogram

中图分类号: