[1] 何文涛, 余学锋. 糖尿病性骨质疏松发病情况及机制新认识[J]. 诊断学理论与实践, 2018, 17(1):5-10.
[2] Si L, Winzenberg TM, Jiang Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050[J]. Osteoporos Int, 2015, 26(7):1929-1937.
[3] Yu JM, Wu X, Gimble JM, et al. Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow[J]. Aging Cell, 2011, 10(1):66-79.
[4] Jing H, Liao L, An Y, et al. Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adipocyte and enhances bone formation during osteoporosis[J]. Mol Ther, 2016, 24(2):217-229.
[5] Wang N, Zhou Z, Wu T, et al. TNF-α-induced NF-κB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin[J]. Open Biol 2016, 6(3):150258.
[6] Liu W, Liu Y, Guo T, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013,4:e539.
[7] Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis[J]. Stem Cells, 2011, 29(11):1804-1816.
[8] Kim YJ, Hwang SH, Lee SY, et al. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose[J]. Stem Cells Dev, 2012, 21(10):1749-1760.
[9] You L, Gu W, Chen L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway[J].Int J Clin Exp Pathol, 2014, 7(10):7249-7261.
[10] Deng Y, Wu S, Zhou H, et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells[J]. Stem Cells Dev, 2013, 22(16): 2278-2286.
[11] Xie Q, Wang Z, Bi X, et al. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 446(1):98-104.
[12] Deng Y, Zhou H, Zou D, et al. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects[J]. Biomaterials, 2013, 34(28):6717-6728.
[13] Ge J, Guo S, Fu Y, et al. Dental Follicle Cells Participate in Tooth Eruption via the RUNX2-MiR-31-SATB2 Loop[J]. J Dent Res, 2015, 94(7):936-947.
[14] Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment[J]. Aging Cell, 2018, 17(4):e12794. |