[1] |
Patel SC, Carpenter WR, Tyree S, et al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years[J]. J Clin Oncol, 2011, 29(11):1488-1494.
doi: 10.1200/JCO.2010.31.7883
pmid: 21383286
|
[2] |
Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (I)[J]. Oral Oncol, 2010, 46(9):630-635.
doi: 10.1016/j.oraloncology.2010.06.006
pmid: 20637681
|
[3] |
van Dijk BA, Brands MT, Geurts SM, et al. Trends in oral cavity cancer incidence, mortality, survival and treatment in the Netherlands[J]. Int J Cancer, 2016, 139(3):574-583.
doi: 10.1002/ijc.30107
pmid: 27038013
|
[4] |
Wang Y, Sun XH, Ji KH, et al. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway[J]. Biomedecine Pharmacother, 2018, 105:1172-1182.
|
[5] |
Li RB, Xin T, Li DD, et al. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and bnip3-mediated mitophagy[J]. Redox Biol, 2018, 18:229-243.
doi: S2213-2317(18)30581-0
pmid: 30056271
|
[6] |
van Beijnum JR, Nowak-Sliwinska P, van Berkel M, et al. A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7)[J]. Angiogenesis, 2017, 20(4):641-654.
doi: 10.1007/s10456-017-9576-3
pmid: 28951988
|
[7] |
Du GQ, Shao ZB, Wu J, et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury[J]. Basic Res Cardiol, 2017, 112(1):7.
doi: 10.1007/s00395-016-0593-y
URL
|
[8] |
Zhou H, Wang SY, Hu SY, et al. ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective[J]. Front Physiol, 2018, 9:755.
doi: 10.3389/fphys.2018.00755
pmid: 29962971
|
[9] |
Park SH, Ozden O, Jiang HY, et al. Sirt3, mitochondrial ROS, ageing, and carcinogenesis[J]. Int J Mol Sci, 2011, 12(9):6226-6239.
doi: 10.3390/ijms12096226
URL
|
[10] |
Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization[J]. Cancer Cell, 2011, 19(3):416-428.
doi: 10.1016/j.ccr.2011.02.014
pmid: 21397863
|
[11] |
Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1):41-52.
doi: 10.1016/j.ccr.2009.11.023
URL
|
[12] |
Jing EX, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci USA, 2011, 108(35):14608-14613.
doi: 10.1073/pnas.1111308108
pmid: 21873205
|
[13] |
Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70[J]. Mol Cell Biol, 2008, 28(20):6384-6401.
doi: 10.1128/MCB.00426-08
pmid: 18710944
|
[14] |
Wang JL, Wang K, Huang C, et al. SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis[J]. Int J Biol Sci, 2018, 14(13):1873-1882.
doi: 10.7150/ijbs.27746
pmid: 30443190
|
[15] |
Turner CJ, Badu-Nkansah K, Hynes RO. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion[J]. Angiogenesis, 2017, 20(4):519-531.
doi: 10.1007/s10456-017-9563-8
pmid: 28667352
|
[16] |
Wang XQ, Shao Y, Ma CY, et al. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress[J]. J Cell Mol Med, 2014, 18(11):2298-2310.
doi: 10.1111/jcmm.2014.18.issue-11
URL
|