[1] |
Chen ZT, Klein T, Murray RZ, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Mater Today, 2016, 19(6): 304-321.
doi: 10.1016/j.mattod.2015.11.004
URL
|
[2] |
Julier Z, Park AJ, Briquez PS, et al. Promoting tissue regeneration by modulating the immune system[J]. Acta Biomater, 2017, 53: 13-28.
doi: S1742-7061(17)30066-1
pmid: 28119112
|
[3] |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196: 80-89.
doi: S0142-9612(17)30834-7
pmid: 29329642
|
[4] |
Michalski MN, McCauley LK. Macrophages and skeletal health[J]. Pharmacol Ther, 2017, 174: 43-54.
doi: 10.1016/j.pharmthera.2017.02.017
URL
|
[5] |
Alvarez MM, Liu JC, Trujillo-de Santiago G, et al. Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications[J]. J Control Release, 2016, 240: 349-363.
doi: 10.1016/j.jconrel.2016.01.026
URL
|
[6] |
刘歆婵, 周延民, 宫琳. 巨噬细胞极化与种植体周围炎关系的研究进展[J]. 医学综述, 2017, 23(14): 2715-2719, 2724.
|
[7] |
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13.
|
[8] |
赵鹃, 黄旭. 单核/巨噬细胞系统来源细胞在种植体骨结合中功能的研究进展[J]. 中华口腔医学杂志, 2018, 53(1): 66-70.
|
[9] |
Brown BN, Ratner BD, Goodman SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine[J]. Biomaterials, 2012, 33(15): 3792-3802.
doi: 10.1016/j.biomaterials.2012.02.034
pmid: 22386919
|
[10] |
Shen XK, Yu YL, Ma PP, et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress[J]. Colloids Surf B Biointerfaces, 2019, 180: 39-48.
doi: 10.1016/j.colsurfb.2019.04.033
URL
|
[11] |
Liu HR, Li DF, Zhang Y, et al. Inflammation, mesenchymal stem cells and bone regeneration[J]. Histochem Cell Biol, 2018, 149(4): 393-404.
doi: 10.1007/s00418-018-1643-3
pmid: 29435765
|
[12] |
Batoon L, Millard SM, Raggatt LJ, et al. Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395.
doi: 10.1007/s11914-017-0384-x
pmid: 28647885
|
[13] |
El-Jawhari JJ, Jones E, Giannoudis PV. The roles of immune cells in bone healing; what we know, do not know and future perspectives[J]. Injury, 2016, 47(11): 2399-2406.
doi: S0020-1383(16)30636-2
pmid: 27809990
|
[14] |
Dong L, Wang CM. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering[J]. Trends Biotechnol, 2013, 31(6): 342-346.
doi: 10.1016/j.tibtech.2013.04.001
pmid: 23623371
|
[15] |
Raggatt LJ, Wullschleger ME, Alexander KA, et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification[J]. Am J Pathol, 2014, 184(12): 3192-3204.
doi: 10.1016/j.ajpath.2014.08.017
pmid: 25285719
|
[16] |
Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. J Immunol, 2008, 181(2): 1232-1244.
doi: 10.4049/jimmunol.181.2.1232
pmid: 18606677
|
[17] |
Nicolaidou V, Wong MM, Redpath AN, et al. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation[J]. PLoS One, 2012, 7(7): e39871. DOI: 10.1371/journal.pone.0039871.
URL
|
[18] |
Saleh LS, Bryant SJ. The host response in tissue engineering: crosstalk between immune cells and cell-laden scaffolds[J]. Curr Opin Biomed Eng, 2018, 6: 58-65.
doi: 10.1016/j.cobme.2018.03.006
pmid: 30374467
|
[19] |
Xiao L, Xiao Y. The autophagy in osteoimmonology: self-eating, maintenance, and beyond[J]. Front Endocrinol (Lausanne), 2019, 10: 490.
doi: 10.3389/fendo.2019.00490
URL
|
[20] |
高硕, 蔡梦洁, 毛飞, 等. 炎症环境下巨噬细胞对小鼠骨髓间质干细胞迁移能力的影响[J]. 江苏大学学报(医学版), 2013, 23(3): 201-206.
|
[21] |
Gong L, Zhao Y, Zhang Y, et al. The macrophage polarization regulates MSC osteoblast differentiation in vitro[J]. Ann Clin Lab Sci, 2016, 46(1): 65-71.
pmid: 26927345
|
[22] |
Zhang Y, Bose T, Unger RE, et al. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs[J]. Cell Tissue Res, 2017, 369(2): 273-286.
doi: 10.1007/s00441-017-2598-8
pmid: 28361303
|
[23] |
Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds[J]. Biomaterials, 2014, 35(15): 4477-4488.
doi: 10.1016/j.biomaterials.2014.02.012
pmid: 24589361
|
[24] |
Zhang H, Wu XL, Wang GC, et al. Macrophage polarization, inflammatory signaling, and NF-κB activation in response to chemically modified titanium surfaces[J]. Colloids Surf B Biointerfaces, 2018, 166: 269-276.
doi: 10.1016/j.colsurfb.2018.03.029
URL
|
[25] |
Zhao FJ, Lei B, Li X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes[J]. Biomaterials, 2018, 178: 36-47.
doi: 10.1016/j.biomaterials.2018.06.004
URL
|
[26] |
Chen JH, Li MT, Yang CL, et al. Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes[J]. Colloids Surf B Biointerfaces, 2018, 163: 336-345.
doi: 10.1016/j.colsurfb.2018.01.007
URL
|