[1] Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell transplantation, 2011, 20(1):5-14.
[2] Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial[J]. Lancet, 2004, 364(9429):141-148.
[3] Cella L, Oppici A, Arbasi M, et al. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw[J]. Head FaceMed, 2011, 7(1):16.
[4] Metallo CM, Mohr JC, Detzel CJ, et al. Engineering the stem cell microenvironment[J]. Biotechnol Prog, 2007, 23(1):18-23.
[5] Scadden DT. The stem-cell niche as an entity of action [J]. Nature, 2006, 441(7097):1075-1079.
[6] Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life [J]. Cell, 2008, 132(4):598-611.
[7] Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche[J]. Cell, 2004, 116(6): 769-778.
[8] Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4): 677-689.
[9] Becerra-Bayona S, Guiza-Arguello V, Qu X, et al. Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts [J]. Acta Biomater, 2012, 8(12):4397-4404.
[10] Toh WS, Lim TC, Kurisawa M, et al. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment[J]. Biomaterials, 2012, 33(15):3835-3845.
[11] Park HJ, Jin Y, Shin J, et al. Catechol-functionalized hyaluronic acid hydrogels enhance angiogenesis and osteogenesis of human adipose-derived stem cells in critical tissue defects[J]. Biomacromolecules, 2016, 17(6):1939-1948.
[12] Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate[J]. Adv Mater, 2015, 27(13):2216-2223.
[13] Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013, 92(11):970-975.
[14] Yan XZ, van den Beucken JJ, Cai X, et al. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading[J]. Tissue Eng Part A, 2015, 21(5-6):1066-1076.
[15] Mohand-Kaci F, Assoul N, Martelly I, et al. Optimized hyaluronic acid-hydrogel design and culture conditions for preservation of mesenchymal stem cell properties[J]. Tissue Eng Part C Methods, 2013, 19(4):288-298.
[16] Kim J, Kim IS, Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells[J]. Biomaterials, 2007, 28(10):1830-1837.
[17] Skaalure SC, Dimson SO, Pennington AM, et al. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering[J]. Acta Biomater, 2014, 10(8):3409-3420.
[18] Ferroni L, Gardin C, Sivolella S, et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue[J]. Int J Mol Sci, 2015, 16(3):4666-4681.
[19] Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors[J]. J Biol Chem, 2002, 277(7):4589-4592.
[20] Longaker MT, Adzick NS, Hall JL, et al. Studies in fetal wound healing, VII. Fetal wound healing may be modulated by hyaluronic acid stimulating activity in amniotic fluid [J].J Pediatr Surg, 1990, 25(4):430-433.
[21] Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462(7272):433-441.
[22] Clevenger TN, Hinman CR, Ashley Rubin RK, et al. Vitronectin-based, biomimetic encapsulating hydrogel scaffolds support adipogenesis of adipose stem cells[J]. Tissue Eng Part A, 2016, 22(7-8):597-609.
[23] Fittkau MH, Zilla P, Bezuidenhout D, et al. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides[J]. Biomaterials, 2005, 26(2):167-174.
[24] Li X, Liu X, Josey B, et al. Short laminin peptide for improved neural stem cell growth[J]. Stem Cells Transl Med, 2014, 3(5):662-670.
[25] Hynes RO. Integrins: bidirectional, allosteric signaling machines [J]. Cell, 2002, 110(6):673-687.
[26] Lee JW, Kim H, Lee KY. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation[J]. Carbohydr Polym, 2016, 139(10): 82-89.
[27] Zhu M, Lin S, Sun Y, et al. Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche[J]. Biomaterials, 2016, 77:44-52.
[28] Oh SA, Lee HY, Lee JH, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation [J]. Tissue Eng Part A, 2012, 18(9-10): 1087-1100.
[29] Park KH, Kim H, Moon S, et al. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering [J]. J Biosci Bioeng, 2009, 108(6):530-537.
[30] Li X, Liu X, Zhao W, et al. Manipulating neural-stem-cellmobilization and migration in vitro[J]. Acta Biomater, 2012, 8(6):2087-2095.
[31] Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix[J]. Cell stem cell, 2009, 5(1):17-26.
[32] Nicodemus GD, Skaalure SC, Bryant SJ. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels[J]. Acta Biomater, 2011, 7(2):492-504.
[33] Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate[J]. Nat Mater, 2010, 9(6): 518-526.
[34] Alavi A, Stupack DG. Cell survival in a three-dimensional matrix [J]. Methods Enzymol, 2007, 426: 85-101.
[35] Mseka T, Bamburg JR, Cramer LP. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization[J]. J Cell Sci, 2007, 120(Pt 24):4332-4344.
[36] Petridis X, Diamanti E, Trigas G, et al. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold[J]. J Craniomaxillofac Surg, 2015, 43(4):483-490.
[37] Heo D N, Castro N J, Lee S J, et al. Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel[J]. Nanoscale, 2017, 9(16):5055. |