[1] |
Chang YL, Lin CY, Kang CJ, et al. Association between multidisciplinary team care and the completion of treatment for oral squamous cell carcinoma: A cohort population-based study[J]. Eur J Cancer Care (Engl), 2021, 30(2): e13367.
|
[2] |
Tartaglia GM, Testori T, Pallavera A, et al. Electromyographic analysis of masticatory and neck muscles in subjects with natural dentition, teeth-supported and implant-supported prostheses[J]. Clin Oral Implants Res, 2008, 19(10): 1081-1088.
doi: 10.1111/clr.2008.19.issue-10
URL
|
[3] |
Chen X, Shah K, Dong SQ, et al. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant[J]. Dent Mater, 2020, 36(3): 431-441.
doi: S0109-5641(20)30008-7
pmid: 31992484
|
[4] |
Hu N, Wu YZ, Xie LX, et al. Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms[J]. Acta Biomater, 2020, 106: 360-375.
doi: 10.1016/j.actbio.2020.02.009
URL
|
[5] |
Kim HK, Ahn B. Effect of Al2O3 sandblasting particle size on the surface topography and residual compressive stresses of three different dental zirconia grades[J]. Materials (Basel), 2021, 14(3): 610.
doi: 10.3390/ma14030610
URL
|
[6] |
Ding XL, Xu SL, Li SB, et al. Biological effects of titanium surface charge with a focus on protein adsorption[J]. ACS Omega, 2020, 5(40): 25617-25624.
doi: 10.1021/acsomega.0c02518
pmid: 33073087
|
[7] |
Sheremetyev V, Petrzhik M, Zhukova Y, et al. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(3): 647-662.
doi: 10.1002/jbm.b.v108.3
URL
|
[8] |
Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces[J]. Bone Joint J, 2018, 100-B(Suppl A): 9-16.
doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1
URL
|
[9] |
Cipriano AF, Miller C, Liu HN. Anodic growth and biomedical applications of TiO2 nanotubes[J]. J Biomed Nanotechnol, 2014, 10(10): 2977-3003.
pmid: 25992426
|
[10] |
李红彩, 马壮. 不同管径钛纳米管对成纤维细胞增殖、伸展和胶原分泌功能的影响[J]. 实用口腔医学杂志, 2017, 33(5): 612-616.
|
[11] |
Oh S, Daraio C, Chen LH, et al. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes[J]. J Biomed Mater Res A, 2006, 78(1): 97-103.
|
[12] |
Wu Z, Wang SG, Chang J, et al. TiO2 nanotubes enhance vascularization and osteogenic differentiation through stimulating interactions between bone marrow stromal cells and endothelial cells[J]. J Biomed Nanotechnol, 2018, 14(4): 765-777.
doi: 10.1166/jbn.2018.2508
URL
|
[13] |
Brammer KS, Oh S, Cobb CJ, et al. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface[J]. Acta Biomater, 2009, 5(8): 3215-3223.
doi: 10.1016/j.actbio.2009.05.008
pmid: 19447210
|
[14] |
Popat KC, Daniels RH, Dubrow RS, et al. Nanostructured surfaces for bone biotemplating applications[J]. J Orthop Res, 2006, 24(4): 619-627.
pmid: 16514643
|
[15] |
Ro HS, Park HJ, Seo YK. Fluorine-incorporated TiO2 nanotopography enhances adhesion and differentiation through ERK/CREB pathway[J]. J Biomed Mater Res A, 2021, 109(8): 1406-1417.
doi: 10.1002/jbm.a.v109.8
URL
|
[16] |
Nemati SH, Hadjizadeh A. Gentamicin-eluting titanium dioxide nanotubes grown on the ultrafine-grained titanium[J]. AAPS PharmSciTech, 2017, 18(6): 2180-2187.
doi: 10.1208/s12249-016-0679-8
pmid: 28063103
|
[17] |
Wang FF, Li CJ, Zhang S, et al. Role of TiO2 nanotubes on the surface of implants in osseointegration in animal models: A systematic review and meta-analysis[J]. J Prosthodont, 2020, 29(6): 501-510.
doi: 10.1111/jopr.v29.6
URL
|
[18] |
Lietha D, Izard T. Roles of membrane domains in integrin-mediated cell adhesion[J]. Int J Mol Sci, 2020, 21(15): E5531.
|
[19] |
Park J, Bauer S, Schlegel KA, et al. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation[J]. Small, 2009, 5(6): 666-671.
doi: 10.1002/smll.v5:6
URL
|
[20] |
王明, 杨生, 邓锋, 等. 不同管径钛纳米管对大鼠骨髓间充质干细胞增殖及成骨分化的影响[J]. 第三军医大学学报, 2014, 36(12): 1273-1278.
|