[1] Kim DH, Rhim R, Li L, et al. Prospective study of iliac crest bone graft harvest site pain and morbidity[J]. SpineJ, 2009, 9(11):886-892.
[2] 许亦权, 胡敏. 下颌骨节段性缺损重建与义齿修复状况[J]. 口腔颌面修复学杂志, 2004, 5(4):274-276.
[3] Holzle F, Kesting MR, Holzle G, et al. Clinical outcome and patient satisfaction after mandibular reconstruction with free fibula flaps[J]. Int J Oral Maxillofac Surg, 2007, 36(9):802-806.
[4] Carinci F, Brunelli G, Zollino I, et al. Mandibles grafted with fresh-frozen bone: an evaluation of implant outcome[J]. Implant Dent, 2009, 18(1):86-95.
[5] Dinse WE, Burnett RR. Anterior maxillary restoration using distraction osteogenesis and implants: a clinical report[J]. J Prosthet Dent, 2008, 100(4):250-253.
[6] 刘林, 夏德林, 孙黎波, 等. 个性化预成型重建板技术联合血管化髂骨肌瓣在下颌骨修复重建中的应用[J]. 中华整形外科杂志, 2016, 32(4):258-263.
[7] Drosse I, Volkmer E, Capanna R, et al. Tissue engineering for bone defect healing: an update on a multi-component approach[J]. Injury, 2008, 39(Suppl 2):S9-20.
[8] Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size[J]. Tissue Eng Part B Rev, 2013, 19(6):485-502.
[9] Wong RC, Tideman H, Kin L, et al. Biomechanics of mandibular reconstruction: a review[J]. Int J Oral Maxillofac Surg, 2010, 39(4):313-319.
[10] 铁瑛, 王冬梅, 季彤, 等. 下颌骨缺损自体骨移植重建的生物力学研究[J]. 生物医学工程学杂志, 2006, 23(4): 743-747,752.
[11] Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(18): 3413-3431.
[12] Matsusaki M, Kadowaki K, Tateishi K, et al. Scaffold-free tissue-engineered construct-hydroxyapatite composites generated by an alternate soaking process: potential for repair of bone defects[J]. Tissue Eng Part A, 2009, 15(1): 55-63.
[13] Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation[J]. Biomaterials, 2017, 115:115-127.
[14] Yaszemski MJ, Payne RG, Hayes WC, et al. The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold[J]. Tissue Eng, 1995, 1(1):41-52.
[15] Yavari SA, Wauthle R, van der Stok J, et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4849-4858.
[16] 鄢荣曾, 李永锋, 王超, 等. 三维打印三维网状钛合金支架的生物力学性能初探[J]. 中华口腔医学杂志, 2016, 51(11):656-660.
[17] 李青峰. 3-D打印技术在整形外科的应用[J]. 中国修复重建外科杂志, 2014, 28(3):266-267.
[18] Liu YF, Zhu FD, Dong XT, et al. Digital design of scaffold for mandibular defect repair based on tissue engineering[J]. J Zhejiang Univ Sci B, 2011, 12(9): 769-779.
[19] 鄢荣曾, 骆丹媚, 秦晓宇, 等. 3D打印制作个性化下颌骨三维网状修复体支架数字化建模方法的研究[J]. 中华口腔医学杂志, 2016, 51(5):280-285.
[20] Kang H, Long JP, Urbiel Goldner GD, et al. A paradigm for the development and evaluation of novel implant topologies for bone fixation: implant design and fabrication[J]. J Biomech, 2012, 45(13):2241-2247.
[21] 李祥, 王成焘, 张文光, 等. 多孔Ti6Al4V植入体电子束制备及其力学性能[J]. 上海交通大学学报, 2009, 43(12): 1946-1949.
[22] 景彩霞, 刘昌奎, 谭新颖, 等. 冻干处理犬同种异体下颌骨:满足重建的强度、外形及支持能力[J]. 中国组织工程研究, 2015, 19(25):3977-3982.
[23] Wang, H, Wu, T, Zhao BJ, et al. Segmental mandibular reconstruction with freeze-dried bone and bone marrow mesenchymal stem cells in beagles [J]. AQCH, 2016, 38(4):221-228.
[24] Liu C, Tan X, Luo J, et al. Reconstruction of beagle hemi-mandibular defects with allogenic mandibular scaffolds and autologous mesenchymal stem cells[J]. PLoS ONE, 2014, 9(8):e105733.
[25] Zhou M, Peng X, Mao C, et al. Primate mandibular reconstruction with prefabricated, vascularized tissue-engineered bone flaps and recombinant human bone morphogenetic protein-2 implanted in situ[J]. Biomaterials, 2010, 31(18):4935-4943.
[26] Sándor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration[J]. J Oral Maxillofac Surg, 2013, 71(5):938-950.
[27] Lee MK, DeConde AS, Lee M, et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects[J]. Am J Otolaryngol, 2015, 36(1):1-6.
[28] Warnke PH, Seitz H, Warnke F, et al. Ceramic scaffoldsproduced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations[J]. J Biomed Mater Res Part B Appl Biomater, 2010, 93(1): 212-217.
[29] Xia Y, Zhou P, Cheng X, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications[J]. Int J Nanomedicine, 2013, 8:4197-4213.
[30] Warnke PH, Douglas T, Wollny P, et al. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering[J]. Tissue Eng Part C Methods, 2009, 15(2):115-124.
[31] Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials, 2014, 35(13):4026-4034.
[32] Meyer U, Büchter A, Hohoff A, et al. Image-based extracorporeal tissue engineering of individualized bone constructs[J]. Int J Oral Maxillofac Implants, 2005, 20(6): 882-890.
[33] 郭凌云, 张劲娥, 袁建兵, 等. 快速原型技术制备Nano-HA/PCL支架与犬骨髓基质干细胞体外复合研究[J]. 口腔颌面外科杂志, 2015, 25(1):34-38.
[34] Chanchareonsook N, Tideman H, Feinberg SE, et al. Segmental mandibular bone reconstruction with a carbonate-substituted hydroxyapatite-coated modular endoprosthetic poly(?-caprolactone) scaffold in Macaca fascicularis[J]. J Biomed Mater Res Part B Appl Biomater, 2014, 102(5): 962-976.
[35] 赵冰净, 胡敏. 金属3D打印技术在口腔医学应用前景[J]. 口腔颌面外科杂志, 2015, 25(4):311-314.
[36] Liu C K, Jing C X, Tan X Y, et al. Using three-dimensional porous internal titanium scaffold or allogenic bone scaffold for tissue-engineering condyle as a novel reconstruction of mandibular condylar defects[J]. J Medical Hypotheses Ideas, 2014, 8(2):69-73.
[37] Zhao B, Wang H, Qiao N, et al. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1):832-841.
[38] Wang H, Zhao B, Liu C, et al. A Comparison of biocompatibility of a titanium Alloy fabricated by electron beam melting and selective laser melting[J]. PLoS ONE, 2016, 11(7): e0158513.
[39] 赵冰净, 王宏, 鄢荣曾, 等. 不工艺三维打印钛合金的表面性能及其对细胞影响的比较研究[J]. 中华口腔医学杂志, 2016, 51(12):753-757.
[40] 王宏, 赵冰净, 鄢荣曾, 等. 电子束选区熔化制备钛合金支架的生物相容性研究[J]. 中华口腔医学杂志, 2016, 51(11):667-672.
[41] Soejima Y, Taguchi T, Sugimoto M, et al. Three-dimensional printing and biotexture modeling for preoperative simulation in living donor liver transplantation for small infants[J]. Liver Transpl, 2016, 22(11):1610-1614.
[42] Wang J, Yang M, Zhu Y, et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J]. Adv Mater Weinheim, 2014, 26(29):4961-4966.
[43] Cecchini MP, Parnigotto M, Merigo F, et al. 3D printing of rat salivary glands: the submandibular-sublingual complex[J]. Anat Histol Embryol, 2014, 43(3):239-244.
[44] Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nat Biotechnol, 2016, 34(3):312-319.
[45] 薛世华 , 吕培军 , 王勇 ,等. 人牙髓细胞共混物三维生物打印技术[J]. 北京大学学报(医学版), 2013, 45(1):105-108.
[46] Fedorovich NE, De Wijn JR, Verbout AJ, et al. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing[J]. Tissue Eng Part A, 2008, 14(1):127-133. |