[1] Prokharau PA, Vermolen FJ, Garcia-Aznar JM. Model for direct bone apposition on pre-existing surfaces, during peri-implant osseointegration[J]. J Theor Biol, 2012, 304:131-142.
[2] Boyan BD, Schwartz Z. Response of musculoskeletal cells to biomaterials[J]. J Am Acad Orthop Surg, 2006, 14(10 Spec No.):S157-S162.
[3] Davies JE. Bone bonding at natural and biomaterial surfaces[J]. Biomaterials, 2007, 28(34):5058-5067.
[4] 罗亚桐,刘铭,刘勇,等. 戊巴比妥钠与速眠新和戊巴比妥钠对家犬麻醉效果的比较[J]. 湖南师范大学学报(医学版), 2006, 4(1):78-79.
[5] 赖春花, 周磊, 贾芳, 等. 钛种植体表面早期成骨方式的动物模型研究[J]. 口腔疾病防治, 2016, 24(5):267-272.
[6] Weinlaender M, Kenney EB, Lekovic V, et al. Histomorphometry of bone apposition around three types of endosseous dental implants[J]. Int J Oral Maxillofac Implants, 1992, 7(4):491-496.
[7] Davies JE. Understanding peri-implant endosseous healing[J]. J Dent Educ, 2003,67(8):932-949.
[8] Davies JE. Mechanisms of endosseous integration[J]. Int J Prosthodont, 1998,11(5):391-401.
[9] Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials, 2009, 30(6):1015-1025.
[10] 吕厚辰, 唐佩福. 骨组织形态及微观结构的影像学评价及进展[J]. 中华骨质疏松和骨矿盐疾病杂志,2016,9(1):68-74.
[11] 郭磊, 赵宏斌. 显微 CT在骨科研究中的应用优势[J]. 昆明医学院学报, 2012, (1B):274-276.
[12] 谢畅, 张宇, 张强. SLA种植体表面喷涂钽形成纳米复合表面预防种植术后早期感染的动物体内实验研究[J]. 中国临床解剖学杂志, 2016, 34(2):208-213.
[13] 钱付民, 宋士霞, 任起辉, 等. 纳米化种植体表面对糖尿病大鼠种植体骨结合影响研究[J]. 中国实用口腔科杂志, 2016, 9(1):31-34.
[14] Ishii K,Matsuo M,Hoshi N, et al. Effect of Ultraviolet Irradiation of the Implant Surface on Progression of Periimplantitis-A Pilot Study in Dogs[J]. Implant Dent, 2016, 25(1):47-53.
[15] Quaranta A, D'Isidoro O,Bambini F, et al. Potential bone to implant contact area of short versus standard implants: an in vitro micro-computed tomography analysis[J]. Implant Dent, 2016, 25(1):97-102.
[16] 吕荣, 王军, 徐新智, 等. 塑料包埋非脱钙骨技术在骨组织学与图像分析中的应用临[J]. 实验病理学杂志, 2006, 22(3):369-370.
[17] Mulder L, Koolstra JH, de Jonge HW, et al. Architecture and mineralization of developing cortical and trabecular bone of the mandible[J]. Anat Embryol(Berl), 2006, 211(1):71-78.
[18] Tamminen IS, Isaksson H, Aula AS, et al. Reproducibility and agreement of micro-CT and histomorphometry in human trabecular bone with different metabolic status [J]. J Bone Miner Metab, 2011, 29(4):442-448. [19] 王军, 毕龙, 白建萍, 等. 显微CT骨标本扫描的伪影评估与消减控制[J]. 中国体视学与图像分析, 2009, 14(1):85-92.
[20] Schouten C, Meijer GJ, van den Beucken JJ, et al. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography[J]. Biomaterials, 2009, 30(27):4539-4549.
[21] Morinaga K, Kido H, Sato A, et al. Chronological Changes in the ultrastructure of titaniumbone interfaces: analysis by light microscopy, transmission electron microscopy, and micro-computed tomography[J]. Clin Implant Dent Relat Res, 2009, 11(1):59-68.
[22] Stoppie N, van der Waerden JP, Jansen JA, et al. Validation of microfocus computed tomography in the evaluation of bone implant specimens[J]. Clin Implant Dent and Relat Res, 2005,7(2):87-94.
[23] Butz F, Ogawa T, Chang TL, et al. Three-dimensional bone-implant integration profiling using micro-computed tomography[J]. Int J Oral Maxillofac Implants, 2006, 21(5):687-695.
[24] Van Oossterwyck H, Duyck J, Vander Sloten J, et al. Use of micro-focus computerized tomography as a new technique for characterizing bone tissue around oral implants[J]. J Oral Implantol, 2000, 26(1):5-12. |